1	Informing the structure of executive function in children: a
2	meta-analysis of functional neuroimaging data
3	
4	Róisín McKenna*, Teresa M. Rushe, Kate A. Woodcock*
5	
6	School of Psychology, Queen's University, Belfast, N. Ireland
7	
8	Correspondence:
9	rmckenna31@qub.ac.uk
10	papers@katewoodcock.com
11	
12	Word count: 7448
13	Figures: 9
14	
15	This manuscript was accepted for publication in <i>Frontiers in Human Neuroscience</i>
16	(http://journal frontiersin org/journal/human-neuroscience) on 15 th March 2017
10	(<u>intp://journal.iron.corg/journal/numari neurosetenee</u>) on 15 (futen 2017
17	
18	
19	

Informing the structure of executive function in children: a meta-analysis of functional neuroimaging data

22

Abstract

23 24

25 The structure of executive function (EF) has been the focus of much debate for decades. What is more, the complexity and diversity provided by the developmental 26 period only adds to this contention. The development of executive function plays an 27 integral part in the expression of children's behavioral, cognitive, social and 28 emotional capabilities. Understanding how these processes are constructed during 29 development allows for effective measurement of EF in this population. This meta-30 31 analysis aims to contribute to a better understanding of the structure of executive function in children. A coordinate-based meta-analysis was conducted (using 32 BrainMap GingerALE 2.3), which incorporated studies administering functional 33 34 magnetic resonance imaging (fMRI) during inhibition, switching and working memory updating tasks in typical children (aged 6-18 years). The neural activation 35 common across all executive tasks was compared to that shared by tasks pertaining 36 only to inhibition, switching or updating, which are commonly considered to be 37 fundamental executive processes. Results support the existence of partially separable 38 but partially overlapping inhibition, switching and updating executive processes at a 39 neural level, in children over 6 years. Further, the shared neural activation across all 40 tasks (associated with a proposed "unitary" component of executive function) 41 overlapped to different degrees with the activation associated with each individual 42 executive process. These findings provide evidence to support the suggestion that one 43 44 of the most influential structural models of executive functioning in adults can also be applied to children of this age. However, the findings also call for careful 45 consideration and measurement of both specific executive processes, and unitary 46 executive function in this population. Furthermore, a need is highlighted for a new 47 48 systematic developmental model, which captures the integrative nature of executive function in children. 49

50

51 Keywords: executive function; fMRI; children; ALE meta-analysis; inhibition;
52 switching; updating; cognitive control

53

54 Introduction

55

Executive function (EF) is an umbrella term for a number of inter-related cognitive 56 processes needed for purposeful, goal-orientated behavior (Anderson, 2001; Lerner & 57 Lonigan, 2014). EF enables the regulation and monitoring of high level cognitive 58 resources and is usually employed in novel situations (Shallice, 1988; Stuss, 1992). 59 Cognitive processes associated with EF include planning, problem-solving, novel 60 thinking, and the ability to adapt behavior to the changing environment (Banich, 61 2004; Zelazo et al., 2003). Additionally, EF performance reliably predicts many 62 63 intellectual and social competencies, such as school readiness (Welsh et al., 2010), early literacy and numeracy attainment (Blair & Razza, 2007), later school 64 accomplishment (Checa & Rueda, 2011) and social understanding (Riggs et al., 65 2006). The terms 'executive function' and 'cognitive control' are regularly used 66 interchangeably in the literature (Lenartowicz et al., 2010; MacDonald, 2008). 67 However – although our position supports this view – for the purpose of clarity and 68

The structure of EF in children

because our work draws heavily on perspectives that have used the 'executive 69 function' term, in this paper this term will be used throughout. Broadly speaking, 70 impairment in EF has been linked to behavioral problems, and is evidenced in 71 individuals with neurodevelopmental disorders including reading disorders, attention 72 deficit hyperactivity disorder (ADHD), autism and several genetic syndromes, 73 including for example, Prader-Willi syndrome (Booth et al., 2003; Danforth et al., 74 75 2016; Kenworthy et al., 2008; Visser et al., 2015; Woodcock et al., 2009; 2010). Despite this, findings in relation to how EF may be linked to clinically relevant 76 behavior remain largely inconsistent. The focus of the present meta-analysis is to 77 78 investigate the neural structure of EF in children during typical development. Such knowledge is necessary to elucidate the executive underpinnings of clinically 79 relevant behavior in individuals with neurodevelopmental disorders. 80 81 There has been much debate on how executive function is structured, for example on 82 how far individual executive processes may reflect manifestations of a single EF 83 capacity or of multiple component processes (Best et al., 2009; Miyake et al., 2000). 84 However, a leading theory, known as the integrative model (Miyake et al., 2000), 85 consolidates such unitary and dissociative views. Importantly, the processes 86 87 considered in this model have been commonly discussed in the context of typical and atypical development, , and roles in behavior (Blair, 2016; Friedman et al., 2011; 88 Harvey et al., 2004; Karasinski, 2015; Roelofs et al., 2015). The processes are: 89 90 withholding a dominant or highly practiced response ("inhibition" (inhibit)); the regular monitoring and revising of working memory content ("updating" (update)); 91 and changing flexibly between tasks and mental sets ("switching" (switch)) (Nee et 92 93 al., 2013). The most recent incarnation of the integrative model identifies an underlying commonality ("common executive") - assumed to contribute to all 94 executive processes. It has been argued, to be virtually indistinguishable from 95

- inhibition alongside separable switching and updating processes, which rely on
 common EF and corresponding unique components (Friedman et al., 2008; 2011;
 Miyake & Friedman, 2012).
- 99

Critically then, there is a currently open question about which executive processes can 100 be viewed as truly separable, and exactly how these are related to each other. This 101 question is fundamentally important for understanding the nature of executive 102 dysfunction in atypically developing populations and its relationship to behavior. For 103 example, taking switching as a purported separable executive process, it has been 104 argued that switching specific demands, which require flexibility, oppose goal 105 maintenance in the face of distractions, which are demands that have been attributed 106 to common executive (Blackwell et al., 2014; Dreisbach & Goschke, 2004; Goschke, 107 2000). Indeed, individual differences in different executive processes have been 108 associated in opposite directions, with attention problems and self-regulatory 109 behaviors (Friedman et al., 2007; 2011; Young et al., 2009). Yet much work on 110 atypically developing populations has tended to take a perspective driven by the 111 measures available, with relatively little attention to underlying structure. Therefore, 112 this approach has often not allowed measure-related and process-related effects to be 113 clearly distinguished (e.g. Van Eylen et al., 2011). Better understanding of how EF 114 processes can be separated is thus required to drive productive research on how these 115 processes can be impaired and the effects of such impairment. One way to further this 116 understanding is with examination of neural constituents of EF. 117

119

120 Since its initial description, the integrative EF model has been applied to child samples in several EF test performance based studies (Agostino et al., 2010; Davidson 121 et al., 2006; Hughes, 1998; Lee et al., 2013; Lehto et al., 2003; Rose et al., 2011). 122 Early results from both exploratory and confirmatory factor analyses showed that – as 123 in adults – there are three inter-related executive processes in children aged 8-13 years 124 (Lehto et al., 2003). However, in subsequent studies switching and updating have not 125 always been distinguishable (Huizinga et al., 2006; Miller et al., 2012; St Clair-126 Thompson & Gathercole, 2006; Usai et al., 2014; van der Sluis et al., 2007; Wiebe et 127 al., 2011). Thus, even applying closely equivalent approaches, the question of how 128 applicable the integrative model is to the developing brain remains to be resolved. It is 129 important to note that these studies have applied a range of different measures to 130 examine EF in children, which could contribute to the inconsistent findings. A neural 131 functional approach that includes multiple measurement approaches can help to 132 resolve this inconsistency. 133

134

In adults, attempts to examine the structure of EF in a neural context have generally 135 provided support for the integrative model. For example, application of a 136 computational neural network model has provided support for common EF and a 137 switching specific process (Herd et al., 2014). Further, meta-analyses of fMRI data 138 have discriminated patterns of activation across putatively separable executive 139 processes (Lenartowicz et al., 2010). Yet, have still identified common activation 140 141 indicative of an overarching EF network (Niendam et al., 2012). However, even in adults, attempts to examine the neural constituents of multiple executive processes in 142 the same meta-analysis (Buchsbaum et al., 2005; Derrfuss et al., 2005) have been 143 144 limited by use of a single task to tap each process. Thus, making it impossible to distinguish between EF process- related and EF task-related findings (Nee et al., 145 2013). 146

147

In children on the other hand, neuroimaging work has generally focused on the 148 emergence and maturation of specific executive processes in children. The 149 development of inhibition, switching and updating (in the broader context of WM) 150 has been examined separately (Durston et al., 2006; Kharitonova et al., 2015; Kwon et 151 al., 2002; Morton et al., 2009; Murphy et al., 2016; Satterthwaite et al., 2013). When 152 assessed collectively, the evidence suggests that from an integrative model 153 perspective, we might expect common executive, switching and updating to show 154 distinguishable developmental trajectories. Indeed, previous fMRI examinations have 155 found age-related activation changes, pertaining to inhibition, switching and updating 156 respectively, during childhood and adolescence (Durston et al., 2006; Kwon et al., 157 2002 & Morton et al., 2009). 158

159

There is a clear lack of meta-analytic investigation using neuroimaging data pertinent 160 to EF in typical children. Many such analyses have incorporated both children and 161 adults in a single sample and have tended to focus on clinical evaluation, particularly 162 163 those relevant to ADHD, as reported in e.g. Cortese et al., 2012; Dickstein et al., 2006; Hart et al., 2013. In addition, existing adult and/or child fMRI meta-analyses 164 have tended to take a process specific or task specific approach rather than attempting 165 to address how multiple executive processes are related to one another (e.g. Criaud & 166 Boulinguez, 2013). Whole brain analyses also need to be utilized, as much of the 167 literature considers a region of interest approach e.g. the insula (Chang et al., 2013), 168

169 or right ventrolateral prefrontal cortex (Levy & Wagner, 2011). Only one metaanalytic study, conducted by Houdé et al. (2010), has reviewed the 3 executive 170 processes considered in the integrative EF model, using fMRI data from typical 171 children and adolescents (aged 4-17 years, using an age cut- off of 11.4 years, as this 172 was the midpoint). Houdé et al. found regions of activation similar to those reported 173 in adult samples. Yet, the authors only examined 'collective' activity pertaining to 174 175 inhibition, updating and switching (which from an integrative model perspective could be viewed as common EF). But did not assess activation specific to individual 176 executive processes. Thus, the findings cannot inform on the potential applicability of 177 178 the integrative EF model to children or the relative commonality versus dissociation of individual processes. 179

180

The present study investigates the structure of EF in children and adolescents, by 181 examining fMRI activation during EF task performance. The executive processes of 182 183 interest include inhibition, updating and switching, as emphasized by Miyake's integrative model. Further, an additional variable representing the unitary executive 184 process ("common executive"), which amalgamates all three executive processes of 185 interest, is considered. BrainMap GingerALE software (version 2.3) was used. In line 186 with Miyake and Friedman's integrative model and the hierarchical model of EF 187 development proposed by Garon et al. (2008), we hypothesize that activity relating to 188 189 inhibition and common executive will largely indicate shared activation. This finding would provide support for inhibition and common executive processes being 190 indistinguishable at a neural level. On the other hand, we hypothesize that significant 191 non-shared activation will become apparent when common executive is compared to 192 switching and updating, indicating the presence of switching-specific and updating-193 specific components of EF in children. 194

195

196 Method

197 Design

198 Papers relating to inhibition, switching and updating were identified. Following this, 199 Activation-Likelihood Estimation (ALE) maps were produced to examine the location of brain activation during inhibition, switching and updating task engagement in the 200 201 whole sample group (aged 6-18 years). Similarly to the study by Houdé et al. (2010), comparable ALE maps were also created from studies comprising only children (6-12 202 years; "child" group). Separate maps for each of the executive processes were created 203 and a "common executive" map comprised shared activation across tasks tapping the 204 individual executive processes. Areas of significant overlap and differentiation in 205 these maps were compared to examine neural integration versus distinction of the EF 206 207 processes.

208

209 Study Selection

210 Literature searches were conducted in Web of Science, PubMed and PsycINFO

between 23rd October 2014 and 24th April 2015. Keyword searches comprised the

following terms combined with AND operators: 1. 'fMRI OR "functional magnetic

resonance imaging"; 2. child*; 3. inhibition OR stroop OR "flanker task" OR

switching OR updating etc. A full list of the terms used is reported in *Table 1*.

215 Multiple terms were used for each executive process of interest. Where specific EF

tasks with commonly used names were identified, these names were added to the

search, e.g. a study employing a Stroop task did not have to include the key word

"inhibition" to be identified. Notably, more such specific tasks were identified for
inhibition (see *Table 1*). Some tests sometimes labelled as EF tests – such as WM
span tasks – measure WM capacity, which we and others consider to be the passive
storage of information in short-term memory, a different construct to WM updating
(Chein et al., 2011; Lehto et al., 1996; Miyake et al., 2000). Such tests were therefore
excluded from the present meta-analysis.

224

225 [Table 1]

226

Initial inclusion criteria were typically developing child participants (aged 6-18227 years) engaging with an inhibition, switching or updating task during fMRI 228 229 acquisition. Consequently, 195 papers were retrieved from these searches. Typical development was defined as having had no prior diagnosis of a psychological 230 problem. Thus, children could be deemed typically developing despite their suggested 231 risk of a psychiatric disorder based on for example, expression of a genetic 232 polymorphism variant or score on a clinical scale using "at risk" cut-offs (e.g. 233 Mechelli et al., 2009; Van't Ent et al., 2009). Following this, authors who did not 234 report activations in standard stereotactic coordinate space (Talairach or Montreal 235 Neurological Institute) were contacted and asked to forward coordinate activations if 236 237 possible. Thus, unpublished data were included in the analysis. If appropriate data were not received by 30th April 2015, the paper was excluded. Authors were also 238 approached if only between groups (higher-level) comparisons were reported. Or if 239 activations isolating the executive process(es) of interest were not addressed, i.e. they 240 had to report a contrast between an executive demand condition and a matched 241 comparison condition that did not apply the executive demand. Further, if papers only 242 provided activation data recorded during the pre-or post-stimuli intervals or if the 243 contrasts were indicative of successful versus failed responses and vice versa. Once 244 these parameters were applied, 90 papers remained. Region-of-interest (ROI) analyses 245 were excluded to prevent an activation bias (Poldrack, 2007; Kriegeskorte et al., 246 2009). Some papers incorporated multiple experiments, either within or across the 3 247 executive processes. However, if needed, further contact with the authors was made to 248 ensure that data from one group of participants during an EF task reported in multiple 249 papers or at multiple time points, was not duplicated. On the other hand, if the same 250 251 participants completed more than one EF task, the data from these tasks was included. Consequently, 49 papers endured, but with 53 experiments. Of these studies, 6 252 included 8 datasets that have never been published before. Further to the database 253 search, the reference lists from all applicable papers were also examined to identify 254 potential additions to the meta-analysis, however, this resulted in no additional 255 papers. 256

257

The final dataset included 1,177 participants with a mean sample age more than 6 258 years and less than 18 years (Table 2). The whole sample dataset incorporated 573 259 activation foci, and the child group incorporated 549 participants across 29 260 experiments, containing 317 activation foci. The cut-off for the child group was based 261 on previous research indicating that executive processes tend to be relatively mature 262 by the age of 12, yet not "fully established" (e.g. Anderson, 2002). A demographic 263 summary of each study including study name, participant age, number of participants, 264 EF task used, stimuli, contrast and number of foci, is outlined in *Table 2*. 265

[Table 2] 267

268

Analysis 269

Activation-Likelihood Estimation (ALE) 270

BrainMap GingerALE software (version 2.3) was used to perform an ALE meta-271 analysis. Analyses were conducted based on Montreal Neurological Institute (MNI) 272 coordinates and coordinates originally published in Talairach and Tournoux (1988) 273 stereotactic-space were converted to MNI using the Lancaster transformation 274 275 (Lancaster et al., 2007). ALE is a coordinate-based technique based on voxel-wise foci of significant activation across the included studies. Activation foci from separate 276 studies are mapped in a common stereotactic space to highlight consistent 277 conjunction. The ALE method calculates the number of activation peaks across each 278 brain region and compares this to a uniform activation distribution representative of a 279 null hypothesis (which is when there are not enough peaks in a voxel to indicate that 280 at least one peak truly activates in that voxel) (Wager et al., 2007). The activation foci 281 are then treated as 3D Gaussian probability distributions and incorporated into a 282 modelled activation map for each study. Data are filtered through a Gaussian kernel, 283 which is sensitive to each study's sample size (Eickhoff et al., 2009; 2011). It is 284 important to note that while the ALE method considers conjunctive activation, a study 285 with more participants can contribute more to the overall results (Wager et al., 2007). 286 The ALE statistic means that within a given voxel, at least one or more significantly 287 activated peaks apply (Turkeltaub et al., 2002). In the present study, the random 288 sampling was subjected to 5000 iterations to compute a null distribution. This was 289 290 then used to compare with voxel-wise ALE values to calculate statistical parameters (Nee et al., 2013). The ALE maps were thresholded at p < 0.05 corrected for multiple 291 comparisons by false discovery rate (FDR; Laird et al., 2005) and a cluster threshold 292 of 100 mm³ (Hill et al., 2014) was employed in the first-level analyses. 293

294

First-level analyses 295

First-level analyses on common executive (shared activation across tasks tapping 296 inhibition, switching and updating executive processes) (Figure 1, part A) and each 297 specific putative executive process (inhibition, updating and switching) were 298 conducted. First-level analyses describe clusters that pass the applied threshold for 299 significant conjunctive activation across these groups of studies. These analyses were 300 computed for both the whole sample and the child group separately. 301

302

Second-level Analyses 303

Second-level analyses compare two first-level analyses, examining significant 304 similarities and differences in activation. Second-level conjunctions reveal significant 305 shared activation between two ALE maps. While second-level contrasts reveal 306 significant non-shared activation between two ALE maps, by subtracting one ALE 307 map from the other. To achieve these analyses whilst controlling for different sample 308 sizes across studies, simulated data is created by pooling datasets and randomly 309 dividing them into two groups of equal size. These groups are also equivalent to the 310 original data sets' sizes. The ALE images from the new datasets are then compared to 311 each other; and resultant conjunctions/contrasts are compared to those in the true data. 312 Following many permutations, a voxel-wise p-value image is created and transformed 313 314 to a z score to indicate significance (Eickhoff et al., 2011).

To examine the distinction between each executive process and common executive, 316 the shared and non-shared activation between these processes was investigated. Since 317 analyses pool data across studies, including the same study in common executive and 318 process specific maps for second-level analyses, would introduce a bias towards 319 significant conjunction. Thus, at the second level, analyses were conducted so as to 320 prevent any individual study being included in two first level maps being compared. 321 322 For example, in second-level analyses for updating and common executive, the "updating" map was compared to a "common executive (inhibit, switch)" map 323 (Figure 1, part B). Conjunction analyses to assess activation pertaining to the 324 325 executive component of the executive process of interest — in this case, updating were conducted (Figure 1, part C). As were contrast analyses which examined 326 updating-specific activity (Figure 1, part D). Corresponding analyses were also 327 administered for switching and inhibition. This technical necessity is thus consistent 328 with our theoretical stance. Here, the common executive construct is defined as a 329 system drawn on by all other executive processes (including the three specific 330 processes focused on here but also others that are not the present focus). Thus, we are 331 332 working from the assumption that shared activation across two; or three; or more individual executive processes should be equally capable of identifying the common 333 executive component at a neural level. 334

335

336 [Figure 1]

337

338 Control Analyses

Further second-level analyses, which we will refer to as "control analyses" were 339 conducted to examine the putative similarities and differences between common 340 executive, switching and updating. The control analyses were designed to control for 341 the lower number of switching studies in the data set. These conjunction and contrast 342 analyses incorporated subsamples of common executive, which comprised inhibition, 343 switching and updating datasets with approximately 58 foci each (to match the 344 345 maximum number of switching foci obtained). These were then compared with subsamples of each specific executive process (again with approx. 58 foci each). 346 Again, to reduce bias, each specific executive process subsample contained different 347 348 studies from their comparative subsample in the common executive dataset. The foci included in each common executive dataset were chosen at random, while ensuring 349 that approximately equal numbers of foci from each EF task were represented. Four 350 different subsample datasets were computed for common executive and updating and 351 thus, four control analyses were conducted. As there is only one switching dataset, we 352 created four subsample datasets with inhibition and updating only (approx. 58 foci 353 each) and contrasted these with the switching dataset, resulting in four separate 354 analyses. Thus, for the examination of updating versus common executive activation, 355 these control analyses included a common executive map derived from studies that 356 included inhibition, switching and updating tasks. The analyses therefore allowed 357 some verification of the assumption that common executive activity can be isolated 358 from shared activation across tasks tapping two; three or more executive processes. 359

360

361 **Results**

362 **Common Executive and Inhibition**

363 **First-level Common Executive Analyses**

364 The first-level ALE map for common executive in the whole sample demonstrated

365 shared activation in 29 clusters, with the largest activation in the right and left middle

and superior frontal gyri and the right and left supplementary motor area. Right
parietal regions, such as the supramarginal gyrus, the inferior and superior parietal
gyri including the intraparietal sulcus (IPS), the precuneus and the angular gyrus, as
well as the left inferior and superior parietal gyri were activated. Activation was also
present in the anterior insular cortex (AIC). (*Figure 2* and *Supplementary materials section A*).

372

373 [Figure 2]

374

The common executive first-level ALE map for the child group showed 30 clusters, and like the child/adolescent group, the largest cluster extended between the right and left supplementary motor area, the right and left middle cingulum and the right and left superior and medial frontal gyri. The same right parietal regions as the whole sample were activated, as well as the right middle frontal and precentral gyri (*Figure 3 and Supplementary materials section B*).

381

382 [Figure 3]

383

384 First-level Inhibition Analyses

The whole sample ALE map for the inhibition first-level analysis indicated 20 activation clusters, with the largest clusters residing in the right and left superior and medial frontal gyrus and right and left supplementary motor areas. Large clusters were also located in the right inferior frontal gyrus extending to the right AIC and right superior temporal pole, as well as the right parietal regions, including the IPS (*Figure 4* and *Supplementary materials section A*).

391

392 [Figure 4]

393

The ALE inhibition first-level map for the child group revealed 18 activation clusters. The main patterns of activation were evident in the frontal areas, including the right frontal eye fields (FEF), with clusters extending from the left and right supplementary motor areas, through the left and right medial frontal gyrus, to the left and right middle cingulum. (*Figure 5* and *Supplementary materials section B*).

399

400 [Figure 5]

401

402 Second-level Analyses

The conjunction analysis for common executive (update, switch) compared with 403 inhibition revealed 10 shared clusters in the whole sample and 5 in the child group. 404 The areas with the most significant activation in the whole sample included the left 405 medial and superior frontal gyri; bilateral areas of the insula and parietal areas; and 406 right sided activation in the precentral gyrus, claustrum and precuneus. Whereas, the 407 areas with significant activation in the child group resided bilaterally in the medial 408 frontal gyri and right sided activation in the cingulate gyrus, claustrum, the inferior 409 parietal lobe and precuneus. However, the contrast analysis did not identify any 410 significant differences for either sample. This is consistent with the view that 411 inhibition is not separable from a common executive capacity (Supplementary 412 materials sections C and D). 413

Common Executive and Updating 415

First-level Updating Analysis 416

The first-level ALE map for updating displayed 25 clusters, with the main activation 417 demonstrated in right and left frontal medial gyrus, including the FEF, extending to 418

the supplementary motor areas and middle cingulum extending to the anterior 419

cingulate cortex (ACC). Other clusters included extensions from the right pars 420

421 opercularis to the right precentral gyrus, the left and right inferior parietal lobule (with

the right sided activation spreading to the supramarginal gyrus and IPS), the right and 422

left middle frontal gyri to the superior frontal gyri and the right and left insula (Figure 423

- 424 4 and Supplementary materials section A).
- 425

Second-level Analyses 426

Examining the common executive component of updating, the second-level 427

conjunction analysis produced 8 clusters in the whole sample (ranging between 428

40mm³ to 2576mm³ in size). These mainly resided in the left and right superior frontal 429

gyrus continuing to the medial frontal gyrus and extending to the right cingulum and 430

right supplementary motor area, the left and right insula and the right inferior and 431

superior parietal lobes (Figure 6 and Supplementary materials section E). The 432

second-level conjunction analysis for the child group resulted in 6 clusters, residing 433

bilaterally in the medial frontal gyrus, the right cingulate gyrus, claustrum and right 434

- parietal areas (Supplementary materials section F). 435
- 436

To examine a putative "updating specific" component of updating, the second level 437 contrast analysis revealed four clusters (ranging between 144mm³ and 1136mm³). 438 These clusters were located in the right middle and superior frontal gyri, as well as the 439 pars triangularis and pars opercularis in the right inferior frontal gyrus, and the left 440 and right cerebellar crus I and II (Figure 6 and Supplementary materials section E). 441 However, the second-level contrast analysis revealed no significant clusters in the 442 child group.

443

444

[Figure 6] 445

446

Control Analyses 447

Four second-level control analyses were conducted using foci-matched common 448 449 executive and updating datasets. This provided a matched point of comparison to the switching analyses. And tested whether the pattern of significant non- shared common 450 executive versus updating activity exists when the common executive map includes 451 updating tests. Two of the analyses identified contrast clusters when common 452

executive was subtracted from updating. The first found one contrast cluster 453

(216mm³) extending between the right inferior and superior parietal lobe. The second 454 found two clusters, with the largest (304mm³) residing between the right middle 455

frontal gyrus and the right precentral gyrus. While the smaller (104mm³) extended 456

between the left cerebral crus I and left cerebellar lobule VI (Supplementary materials 457

458 section H). These findings demonstrate that although the power of the analysis has

been compromised, due to the lower number of foci included, updating-specific 459 activity is still apparent. 460

461

Common Executive and Switching 462

First-level Switching Analysis 463

The first-level analysis for switching resulted in 4 activation clusters. The largest cluster was located in the right postcentral gyrus in the parietal lobe, with other clusters residing in the right middle cingulum extending to the ACC, the left precentral gyrus extending to the pars opercularis in the inferior frontal gyrus and the left lingual gyrus spreading to the left calcarine (*Figure 4 and Supplementary*

468 felt ingual gyrus spreading to the felt calcarine (*Figure 4 and Supplemen* 469 materials section A).

470

471 Second-level Analyses

472 Furthermore, to examine the putative common executive component of switching, the second-level conjunction analysis revealed one cluster (88mm³) extending between 473 the left precentral gyrus and the left frontal inferior operculum. To examine the 474 putative "switching-specific" component of switching, the second level contrast 475 analysis revealed one cluster (192mm³) in the left lingual gyrus extending to the left 476 calcarine (Figure 7 and Supplementary materials section G). These findings support 477 the view that common executive and switching-specific components of switching may 478 be separable at a neural level. Conjunction and contrast analyses were conducted for 479 the child group, however, due to the low number of studies, no clusters pertaining to 480 shared or non-shared activation were revealed. 481

482 483 [Figure 7]

484

485 Control Analyses

Finally, four control analyses were also generated for the equivalent switching data,
however, no significant differences were found in the contrast analyses.

- 489 **Discussion**
- 490

488

Here, an ALE meta-analysis investigated overlap and differentiation in neural 491 activation pertaining to inhibition, switching, updating and the putative unitary 492 'common executive' capacity in children under the age of 18. Results suggest an 493 overlapping yet distinct neural structure of executive function, as previously reported 494 495 in adults (Collette et al., 2006). No inhibition-specific neural correlates unrelated to the common executive were identified in either the whole sample (child/adolescent) 496 497 or in the child only group. Further, when updating and switching were compared to the unitary common executive, shared neural activation was demonstrated, pointing 498 towards common executive components of switching and updating. However, such 499 comparisons also revealed non-shared neural activation linked to updating and 500 switching, pointing towards separable updating-specific and switching-specific 501 entities in the whole sample. Specifically focusing on the child group relied on 502 analyses with less power. Nevertheless, it is important that no evidence could be 503 504 provided to support updating or switching-specific separable entities in the child group, despite substantial data being available to examine this possibility for 505 updating. 506

507

508 When common executive activity was isolated, it revealed significant bilateral

activation in fronto-parietal areas and regions of the supplementary motor area in the

- 510 whole sample group. The corresponding analysis limited to the child group
- 511 demonstrated significant activity in largely the same areas. These results are in line 512 with previous findings, which show activity in these areas during EF tasks throughout

the child and adolescent years (Chambers et al., 2009). Further, activation in these 513 regions has also been linked to conjunctive activity across inhibition, switching and 514 updating tasks in adults aged 18-60 years (Niendam et al., 2012). This is consistent 515 with the EF 'fronto-parietal flexible hub' theory posited by Cole et al. (2013), which 516 is based on functional neural connections engaged during EF. Previous meta-analyses 517 assessing EF activation have also generated results indicative of shared neural 518 519 activity. One such analysis, conducted by Derrfuss et al. (2005), assessed the role of the inferior frontal junction (IFJ) during switching and Stroop task performance. Both 520 analyses showed concurrence of activation in the IFJ, yielding support for an overlap 521 522 of shared resources between the two executive process paradigms. Since the IFJ is part of the fronto-cingulo-parietal network, this study provides further support for the 523 present results. Furthermore, as the study by Derrfuss et al. examines adult data, our 524 525 results suggest a similar EF structure may be apparent in children.

526

527 In the present study, common executive activity coincided with activity linked to inhibition – isolated from shared activation across only inhibition tasks – in both the 528 whole sample, and the child only group. However, for activity linked to inhibition 529 tasks, larger clusters of right parietal activity were evident in the whole sample 530 relative to the child group. Although our analyses could not make direct statistical 531 comparisons between the two sample groups, these findings are generally consistent 532 with progressive age-related increases in parietal activation during inhibition 533 engagement (Neufang et al., 2008; Rubia et al., 2006). This is also consistent with 534 further evidence reporting a right laterality effect in adolescents compared to children 535 (Houdé et al., 2011). In line with the apparent similarities across common executive 536 and inhibition related activation maps, our findings demonstrated areas of statistically 537 significant shared activation across common executive and inhibition. Although, 538 direct comparison between activation pertaining to inhibition and common executive 539 has not been the focus, many previous studies have reported corresponding areas of 540 activation for these constructs in child, adolescent and adult samples (Lei et al., 2015; 541 Niendam et al., 2012; Vara et al., 2014; Velanova et al., 2008; Wager et al., 2005). 542

543

Further, our findings showed of no areas of statistically significant difference across 544 common executive and inhibition in either the whole sample or the child group. This 545 546 is consistent with our hypothesis and in line with the view that inhibition and common executive are indistinguishable (Friedman et al., 2008; 2011; Miyake & Friedman, 547 2012). This finding is important because it helps to reconcile some of the previous 548 discrepant findings in the field. For example, previous research on the structure and 549 550 development of EF suggests a unitary factor representing a common underlying EF process is evident during early- middle childhood. And after this time, distinct 551 executive processes emerge (Brydges et al. 2014; Lerner & Lonigan, 2014; Shing et 552 al., 2010; Tsujimoto et al., 2007). In addition, both Zelazo's cognitive complexity and 553 control theory (Zelazo & Frye, 1998; Zelazo & Muller, 2002) and Munakata's theory 554 (Munakata, 2001) describe EF changes in early childhood as possessing a unitary 555 quality. However, in contrast, Diamond emphasizes the dissociative components of 556 EF during development, yet, she also argues that periods of synthesis of multiple 557 executive processes can occur during times of EF growth spurts in the preschool and 558 early childhood years (Diamond, 2001, 2006). Inhibition is the factor most commonly 559 identified in developmental EF latent variable analysis research, even in very young 560 children, and this may be the first to develop (Garon et al., 2008). Therefore, the 561 present findings suggest that what develops first may be the common component of 562

EF, which is indistinguishable from inhibition during the developmental period.
Executive dysfunction at an early age may thus be primarily governed by an inhibition
deficit. Due to the apparent strong links with behavior problems, early intervention to
improve inhibitory abilities may be key to minimizing the risk of developing
clinically-relevant behaviors.

568

In examining common executive components of updating in children under 18 years, 569 our findings point towards bilateral frontal, right parietal and subcortical activation. 570 Furthermore, updating-specific activation could be distinguished from this pattern in 571 the whole sample group. Updating-specific activity was also frontal but specifically 572 right sided, and further included areas of activation in the cerebellum. Previous work 573 in adults has revealed greater activation in bilateral frontal regions as well as left 574 parietal areas, when updating was compared to switching and inhibition (Collette et 575 al., 2005), pointing towards some correspondence across children and adults in this 576 577 respect. Previous work in adults has attempted to isolate an updating-specific process from common executive at a neural level using relational analyses between indices 578 derived from performance on cognitive tests; and functional and morphometric 579 indices of brain networks (Reineberg et al., 2015; Smolker et al., 2015). However, 580 relationships between individual differences in updating-specific ability and a resting 581 state functional connectivity network were not demonstrated consistently across all of 582 these indices. It was therefore proposed that updating-specific ability may rely more 583 on a specific area involved in WM and less on connectivity between regions. 584

585

Miyake and Friedman (2012) posited that the concept of an updating-specific process, 586 and the abilities it taps, is less clear than the other executive processes. Yet, they have 587 suggested 'effective gating of information' and 'controlled retrieval from long-term 588 memory' as integral components. This proposal is consistent with work that has 589 examined transformation, substitution – in line with Miyake's effective gating – and 590 retrieval, as updating subsidiary components (Bledowski et al., 2010; Ecker et al., 591 2010; Zhang et al., 2012). This allows updating to be viewed with respect to 592 performance on measures of WM capacity, which similarly draw on retrieval (Ecker 593 et al., 2010; Unsworth & Engle, 2008). All of the updating tasks included in the 594 present meta-analysis (n back tasks) and the task employed by Reineberg et al. (2015) 595 596 and Smolker et al. (2015) (keep track), require retrieval (Linares et al., 2016). Thus, since right prefrontal brain regions have been particularly implicated in WM capacity 597 (Prabhakaran et al., 2000; Repovs & Baddeley, 2006; Zhang et al., 2004), the present 598 599 findings are consistent with the view that the updating specific process identified may rely heavily on neural architecture involved in WM capacity. Previous research has 600 suggested that computerized WM training can increase WM capacity and improve use 601 of WM in everyday life (Spencer-Smith & Klingberg, 2015). However, there has been 602 debate around whether such improvements may transfer to, for example clinical 603 benefits in developmentally disordered populations (Melby-Lervag & Hulme, 2013). 604 Future work in this area that considers the presently suggested relationship between 605 updating specific EF and WM capacity may be productive in informing on the scope 606 of potential effects of WM training and their applicability to atypical child 607 populations. 608

609

610 The present results also pointed towards a role of the cerebellum in updating-specific 611 processes. Cerebellar activation has been linked to performance monitoring during 612 task approximate. Particularly, it has been linked to post error processing in relation to

task engagement. Particularly, it has been linked to post-error processing in relation to

motor responses (Peterburs et al., 2015). All of the presently included updating tasks 613 incorporated button-press responses, consistent with involvement of post-error motor 614 response processes. Thus, it is possible that the present involvement of cerebellar 615 activity reflects a task specific process, as have been highlighted as important factors 616 to consider in this kind of functional neuroimaging analysis (Chein et al., 2011; 617 Tomasino & Gremese, 2016). Considering such processes, it is interesting to note that 618 a particular role for cross-modal integration of information for WM has been 619 highlighted (Prabhakaran et al., 2000; Repovs & Baddeley, 2006; Zhang et al., 2004). 620 Since the updating tasks involved in the present meta-analysis also involve integration 621 622 of information across domains, one possibility that warrants further examination is the degree to which updating-specific processes may be inherently task specific. 623 624 Notably, our results revealed no updating-specific activation in the child group 625 suggesting a possible distinction between how far updating-specific neural processes 626

can be differentiated in children under 12 years; and those under 18 years. When 627 examining updating subcomponents, age related changes in neural activation linked to 628 retrieval, but not substitution or transformation, have been demonstrated across 629 children, adolescents and young adults (Linares et al., 2016). This is consistent with 630 development in WM capacity throughout childhood and adolescence. Such 631 development follows a linear trajectory with subtle adjustments, in particular, in 632 increased capacity, taking place during adolescence and early adulthood (Gathercole 633 et al., 2004; Satterthwaite et al., 2013). Thus, one interesting possibility highlighted 634 by the present findings is that as WM capacity develops over childhood, so too does 635 the relationship between common and specific components of updating, which allows 636 updating tasks to be performed successfully. A focus for future research may be to 637 assess the development of both dimensions of updating during childhood. And 638 examine if there is a temporal link between improvements in WM capacity and the 639 advancement of the executive component of updating and updating- specific abilities. 640

641

Our first-level analysis of switching related activation pointed towards involvement of 642 right parietal-cingulo, left frontal and left occipital (lingual gyrus) regions. These 643 findings must be treated with substantial caution due to the lack of switching data. 644 Yet, they are consistent with previous meta-analyses examining switching-related 645 646 neural activation in adults (Buchsbaum et al., 2005; Collette et al., 2005; Niendam et al., 2012) and so suggest a general correspondence between children and adults in this 647 respect. Unfortunately due to the low number of switching studies included, a 648 comprehensive examination of switching related activation in children under 12 years 649 was not possible. The present evidence for both a common executive component of 650 switching – which involved left frontal activation – and a switching-specific 651 component, is consistent with previous work in adults (Herd et al., 2014; Reineberg et 652 al., 2015; Smolker et al., 2015) and supports an integrative view of switching in 653 children. However, previous work has pointed towards parietal involvement in a 654 switching-specific process in adults (Collette et al., 2005; Reineberg et al., 2015). But 655 the presently identified switching-specific activity was limited to left occipital regions 656 (lingual gyrus). In interpreting these results, it is again important to consider the 657 limitations of the relatively small amount of data available on switching tasks. 658 However, since all of the presently included switching tasks relied heavily on visual 659 stimuli, the finding is consistent with increased susceptibility to task modality being a 660 feature of less developed cognitive processing (Fisher, 2011; Irving et al., 2011). 661 Interestingly, deficient switching demonstrated in individuals with a particular genetic 662

neurodevelopmental disorder has been associated with greater involvement of
occipital; but reduced involvement of frontal parietal brain regions in switching
(Woodcock et al., 2010). Thus, an important area for future investigation will be how
switching-specific processes change over the course of development. And whether the
deficient switching that appears to be evidenced in several neurodevelopmental
disorders (Van Eylen et al., 2011; Woodcock et al., 2009), reflects a deficiency in
switching-specific processes; the common executive component of switching; or both.

Overall, these findings demonstrate that the neural substrates of executive function in
children are part of a superordinate EF network, mainly represented in the frontocingulo-parietal cortices. Yet, selective recruitment within these areas and others,
such as subcortical regions, is evident when executive process-specific capacity is
analyzed. These results are in line with previous meta-analytic research examining EF
in adults (Collette et al., 2005; Niendam et al., 2012).

677

Not dissimilar to other brain imaging meta-analyses, methodological considerations 678 are evident. A limitation of the ALE method is that, with regards to statistical 679 thresholds, inter-study differences are not accounted for- perhaps most notably, the 680 power of each study. Further, this coordinate-based technique does not consider the 681 extent of activation for each cluster but activation location only. Cluster based 682 thresholding does not allow for precise spatial specificity, thus, we must be careful 683 not to make inferences about the statistical significance of a particular location within 684 a given cluster (Woo et al., 2014). Findings should also be regarded as a depiction of 685 positive results, bearing in mind negative results cannot be generated (Cortese et al., 686 2012). 687

688

In addition, the present study did not account for task content (e.g. stimuli type-689 spatial, letter, number etc.; or response type- motor, verbal). Previous meta-analyses 690 have found EF activation to be task-dependent (Kim et al., 2012). For instance, 691 Simmonds et al. (2008) reported additional 'complexity' related activation when they 692 compared simple and complex go/no-go tasks which varied in terms of their working 693 memory demands. Likewise, Swick et al. (2011) acknowledged the need to consider 694 differential processing demands elicited by executive tasks. Upon examination of the 695 neural activation of go/no-go and stop-signal tasks, the authors found concurrent 696 activity for both tasks, whereas non-concurrence appeared in areas of the 697 frontoparietal and cingulo-opercular networks respectively. It is unfortunate that we 698 were restricted in which tasks we could include in our analysis, as it is possible that 699 700 the differential processing demands of those tasks had an influence on the patterns of activity identified. Indeed our results may indicate that activation relating to 701 switching-specific and updating-specific abilities reflect processing demands 702 necessary for respective task completion. Yet, since our analyses did not rely on only 703 one particular task, the task-specific influence on our results was minimized. 704 Nonetheless, in order to demonstrate a more complete neural picture of EF 705 performance, future meta-analytic study should assess neural activity associated with 706 707 EF task-specific components, which may in turn help to promote more effective EF measurement. 708 709

A further limitation of the present study is the broad age range used in the dataset. In
 addition to this, as some papers included in the analysis did not report detailed age

demographics (see table 2), there may be variability in the overall age range reported. 712 Moreover, a clear limitation is the lack of switching studies that were available for 713 inclusion. Thus, the present results relating to switching, particularly in the higher-714 level comparisons with other executive processes, should be treated with caution. 715 While there has been considerable interest in examining the neural correlates of 716 switching using fMRI, most of these studies do not include data from typical children 717 718 and/or have not examined the contrasts appropriate for isolating the presently studied construct of switching. This may be because switching has been examined at a more 719 sub-componential level e.g. the focus of the literature does not seem to be in 720 721 examining switching per se but instead how it works. Perhaps if a model of EF can be applied to children, which includes switching as a basic construct, this might facilitate 722 more future attention on the construct of switching itself. 723

724

Finally, it is important to acknowledge the assumption made in the present analyses, 725 based on our theoretical position. That is, isolating common executive activity based 726 on tests tapping only two putative executive processes (Figure 1, part B), served an 727 equivalent role to isolating such activity based on tests tapping three or more 728 executive processes (Figure 1, part A). We were able to test this assumption on a 729 small scale in our control analyses of updating, which pointed towards consistency 730 with our primary analyses. We also conducted further second-level analyses which 731 examined the shared and non-shared activation between maps of common executive, 732 733 which included all tasks pertaining to inhibition, switching and updating and one of the executive processes. These analyses assessed whether inclusion of this data would 734 bias the patterns of overlap and distinction. As expected, results showed shared 735 overlap when each executive process was compared to the 'inclusive' common 736 737 executive map (with more significant clusters identified than in the primary analyses reported here). But no distinct clusters in contrast analyses were found in any of the 738 analyses (Supplementary materials I, J and K). Thus, supporting the existence of a 739 740 bias towards identification of conjunctive activation if any of the same studies are included in two maps compared in second-level analyses. These findings support our 741 assumption. Nevertheless, the nature of the limitation itself meant that it could not be 742 tested directly. For example, second-level comparison of a common executive map 743 comprising inhibition, switching and updating studies; to one comprising only the 744 inhibition and switching studies; would be biased towards identification of 745 746 conjunctive activation.

747

748 In conclusion, the findings suggest that a structural model of EF – proposing one common underlying, and multiple separable processes – can be applied during 749 development. However, in line with recent behavioral evidence, it does not appear 750 that inhibition can be distinguished from the common process. And, updating and 751 switching appear separable when considering adolescents alongside children. But, in 752 children, these processes may not be separable. Thus, due to the complex nature of 753 754 development and the changing structural climate of EF throughout childhood (Brydges et al., 2014; Howard et al., 2015; Lerner & Lonigan, 2014; Shing et al., 755 2010; Tsujimoto et al., 2007), perhaps a new systematic developmental model is 756 757 needed. The model should encourage careful measurement of common and processspecific components. Previous meta-analytic study has reported effects of task 758 modality on EF performance in children (Booth et al., 2010). However, the influence 759 of non-executive factors on EF performance at a neural level has not yet been 760 investigated. As a result, future examination is warranted, which could inform on 761

The structure of EF in children

- valid EF measurement. Only then, can we begin to systematically amalgamate
- knowledge acquired through understanding the neural infrastructure of EF in
- development, to behavior- in particular, executive dysfunction in clinical populations.

766 Author Contributions

All authors made substantial contributions to research design, drafting and final
approval of the manuscript. RM conducted the literature searches and analyses as a
part of her doctoral research. KW acted as RM's principal supervisor and TR acted as
RM's second supervisor.

772 773

774

775 Acknowledgements

776

The research was supported financially by a doctoral scholarship (to RM) from the
Department of Education and Learning, Northern Ireland. Several authors whose
articles are included in the analysis provided additional (previously unpublished) data
and their contribution is very gratefully acknowledged. Ciara McGuinness, Roisín
McCrory, Katrin Tott, Laura Hynds, Elizabeth Heads, Daniel Collins, Mary Frances
McCafferty kindly assisted with literature searches.

784 785 786	Primary references (for meta-analysis data, see further list below)
787	Agostino, A., Johnson, J., & Pascual-Leone, J. (2010). Executive functions underlying
788	multiplicative reasoning: Problem type matters. <i>Journal of Experimental Child</i>
789	<i>Psychology</i> , 105, 286-305. doi:10.1016/j.jecp.2009.09.006
790	
791	Anderson, P. (2002) Assessment and Development of Executive Function (EF)
792	During Childhood, Child Neuropsychology, 2, 71-82, doi: 10.1076/chin.8.2.71.8724
793	
794	Anderson, V. (2001). Assessing executive functions in children: biological.
795	psychological, and developmental considerations. <i>Pediatric Rehabilitation</i> , 4, 119-
796	136.
797	
798	Banich, M. (2004). Cognitive neuroscience and neuropsychology (2nd ed.). New
799	York, NY: Houghton Mifflin
800	
801	Best, J. R., Miller, P. H., & Jones, L. L. (2009). Executive functions after age 5:
802	Changes and correlates. <i>Developmental Review</i> , 29, 180-200.
803	doi:10.1016/j.dr.2009.05.002
804	5
805	Blackwell, K. A., Chatham, C. H., Wiseheart, M., & Munakata, Y. (2014). A
806	developmental window into trade-offs in executive function: The case of task
807	switching versus response inhibition in 6-year-olds. <i>Neuropsychologia</i> , 62, 356-364.
808	doi: 10.1016/j.neuropsychologia.2014.04.016
809	
810	Blair, C. (2016). Developmental Science and Executive Function. Current Directions
811	in Psychological Science, 25, 3-7. doi:10.1177/0963721415622634
812	
813	Blair, C., & Razza, R. P. (2007). Relating effortful control, executive function, and
814	false belief understanding to emerging math and literacy ability in kindergarten. Child
815	Development, 78, 647-63.
816	-
817	Bledowski, C., Kaiser, J., & Rahm, B. (2010). Basic operations in working memory:
818	contributions from functional imaging studies. Behavioural Brain Research, 214,
819	172-179. doi: 10.1016/j.bbr.2010.05.041.
820	
821	Booth, J. N., Boyle, J. M. E., & Kelly, S. W. (2010). Do tasks make a difference?
822	Accounting for heterogeneity of performance of children with reading difficulties on
823	tasks of executive function: Findings from a meta-analysis. British Journal of
824	Developmental Psychology, 28, 133–176. doi: 10.1348/026151009X485432
825	
826	Booth, R., Charlton, R., Hughes, C., & Happe, F. (2003). Disentangling weak
827	coherence and executive dysfunction: Planning drawing in autism and attention-
828	deficit/ hyperactivity disorder. Philosophical Transactions of the Royal Society of
829	London Series B, 358, 387–392.
830	
831	Brydges, C. R., Fox, A. M., Reid, C. L., & Anderson, M. (2014). The differentiation
832	of executive functions in middle and late childhood: A longitudinal latent-variable
833	analysis. Intelligence, 47, 34-43. doi: 10.1016/j.intell.2014.08.010
834	

835	Buchsbaum, B. R., Greer, S., Chang, W., & Berman, K. F. (2005). Meta-Analysis of
836	Neuroimaging Studies of the Wisconsin Card-Sorting Task and Component
837	Processes. Human Brain Mapping, 25, 35-45. doi:10.1002/hbm.20128
838	
839	Chambers, C. D., Garavan, H., & Bellgrove, M. A. (2009). Insights into the neural
840	basis of response inhibition from cognitive and clinical neuroscience Neuroscience &
040	Pichehavioral Paviana 22, 621 46 doi: 10.1016/j. poubiorov. 2008.08.016
841	<i>Biobenaviorai Reviews, 55</i> , 051-40. doi: 10.1010/j.neubioiev.2008.08.010.
842	
843	Chang, L. J., Yarkoni, T., Knaw, M. W., & Sanfey, A. G. (2013). Decoding the Role
844	of the Insula in Human Cognition: Functional Parcellation and Large-Scale Reverse
845	Inference. Cereb Cortex, 23, 739-749. doi: 10.1093/cercor/bhs065
846	
847	Checa, P., & Rueda, R. (2011). Behavioural and Brain Measures of Executive
848	Attention and School Competence in Late Childhood. Developmental
849	Neuropsychology, 36, 1018-1032. doi:
850	10.1080/87565641.2011.591857
851	
852	Chein, J. M., Moore, A. B., & Conway, A. R. A. (2011). Domain-general mechanisms
853	of complex working memory span. <i>Neuroimage</i> , 54, 550-559.
854	doi:10.1016/i.neuroimage.2010.07.0
855	
856	Cole M W Reynolds I R Power I D Repoys G Anticevic A & Braver T S
857	(2013) Multi-task connectivity reveals flexible hubs for adaptive task control <i>Nature</i>
858	Neuroscience 16 1348-1358 doi:10.1038/nn.3470
850 850	<i>Neuroscience</i> , 10, 13+0-1550. doi:10.1050/mi.5+70
859	Collette E. Hogge M. Salmon E. & Van der Linden M. (2006). Exploration of the
000 961	concute, F., Hogge, W., Sannon, E., & Van der Einden, W. (2000). Exploration of the
801	120, 200, 221, doi: 10.1016/i nouroscience 2005.05.025
802	139, 209-221. doi: 10.1010/j.lieutoscience.2005.05.055
863	Callette E. Van den Linden M. Lemmer, C. Dalfam, C. Davidler, C. Lemmer, A.
864	Collette, F., Van der Linden, M., Laureys, S., Delfiore, G., Degueldre, C., Luxen, A.
865	et al. (2005). Exploring the Unity and Diversity of the Neural Substrates of Executive
866	Functioning. Human Brain Mapping, 25, 409-423. doi:10.1002/hbm.20118
867	
868	Cortese, S., Kelly, C., Chabernaud, C., Proal, E., Di Martino, A., Milham, M. P., &
869	Castellanos, F. X. (2012). Towards systems neuroscience of ADHD: A meta-analysis
870	of 55 fMRI studies. The American Journal of Psychiatry, 169, 1038–1055.
871	doi:10.1176/appi.ajp.2012.11101521.
872	
873	Criaud, M., & Boulinguez, P. (2013). Have we been asking the right questions when
874	assessing response inhibition in go/no-go tasks with fMRI? A meta-analysis and
875	critical review. Neuroscience & Biobehavioral Reviews, 37, 11-23.
876	doi:10.1016/j.neubiorev.2012.11.003
877	
878	Danforth, J. S., Connor, D. F., & Doerfler, L. A. (2016). The Development of
879	Comorbid Conduct Problems in Children With ADHD: An Example of an Integrative
880	Developmental Psychopathology Perspective. <i>Journal of Attention Disorders</i> 20
881	214-229. doi: 0.1177/1087054713517546
882	
882	Davidson M C Amso D Anderson I C & Diamond A (2006) Development of
005	cognitive control and executive functions from 4 to 12 years: Evidence from
004	cognitive control and executive functions from 4 to 15 years. Evidence from

885 886	manipulations of memory, inhibition, and task switching. <i>Neuropsychologia</i> , 44, 2037–2078.
88/	Derrfuss I Press M. Neumann I. & Yves ven Cremon (2005) Involvement of the
000	Inferior Frontal Junction in Cognitive Control: Mate Analyses of Switching and
889	Interior Frontai Junction in Cognitive Control: Meta-Anaryses of Switching and Strategy Stratig $H_{\rm eff} = 0.25, 22, 24, 45, 10, 1002/(4 m 20127)$
890	Stroop Studies. Human Brain Mapping, 25, 22-34. doi: 10.1002/nbm.20127
891	
892	Diamond, A. (2001). A model system for studying the role of dopamine in the
893	prefrontal cortex during early development in humans: Early and continuously treated
894	phenylketonuria. In C. Nelson & M. Luciana (Eds.), Handbook of developmental
895	cognitive neuroscience (pp. 433–472). Cambridge, MA: MIT Press.
896	
897	Diamond, A. (2006). The early development of executive functions. In E. Bialystock
898	& F. I. M. Craik (Eds.), The early development of executivefunctions. Lifespan
899	cognition: Mechanisms of change (pp. 70–95). Oxford, England: Oxford University
900	Press.
901	
902	Dickstein, S. G., Bannon, K., Castellanos, F. X., & Milham, M. P. (2006). The neural
903	correlates of attention deficit hyperactivity disorder: an ALE meta-analysis. <i>Journal</i>
904	of Child Psychology and Psychiatry, 47, 1051-1062. doi:10.1111/j.1469-
905	/610.2006.016/1.x
906	
907	Dreisbach, G., & Goschke, I. (2004). How Positive Affect Modulates Cognitive
908	Control: Reduced Perseveration at the Cost of Increased Distractibility. <i>Journal of</i>
909	Experimental Psychology: Learning, Memory, and Cognition, 30, 343-353.
910	doi:10.103//02/8-/393.30.2.343
911	Durston & Davidson M.C. Tottanham N. Calvan A. Spicar I. Ecceptia I.A. &
912	Casay B. J. (2006). A shift from diffuse to feed cortical activity with development
915	<u>Casey, B. J.</u> (2000). A shift from diffuse to focal control activity with development.
914 015	Developmentul Science, 9, 1-6.
915	Ecker II K H Lewandowsky S Oberauer K & Chee A F H (2010) The
917	Components of Working Memory Undating: An Experimental Decomposition and
918	Individual Differences Journal of Experimental Psychology: Learning Memory and
010	Cognition 36 170-180 doi: 10 1037/a0017891
920	
921	Fickhoff S B Laird A R Grefkes C Wang L E Zilles K & Fox P T
922	(2009) Coordinate based activation likelihood estimation meta-analysis of
923	neuroimaging data: A random-effects approach based on empirical estimates of
924	spatial uncertainty. Human Brain Mapping 30, 2907-2926, doi: 10, 1002/hbm 20718
925	
926	Eickhoff, S. B., Bzdoc, D., Laird, A. R., Roski, C., Caspers, S., Zilles,
927	K., et al. (2011). Co-
928	activation patterns distinguish cortical modules, their connectivity and
929	functional differentiation. Neuroimage, 57, 938-949.
930	doi:10.1016/j.neuroimage.2011.05.021
931	
932	Fisher, A. V. (2011). Automatic shifts of attention in the Dimensional Change Card
933	Sort task: Subtle changes in task materials lead to flexible switching. Journal of
024	Experimental Child Psychology 108 211 210 doi:10.1016/j.jecp.2010.07.001

934 Experimental Child Psychology, 108, 211-219. doi:10.1016/j.jecp.2010.07.001

935	
936 937 938	Friedman, N. P., Haberstick, B. C., Willcutt, E. G., Miyake, A., Young, S. E., Corley, R. P., et al. (2007). Greater attention problems during childhood predict poorer executive functioning in late adolescence. <i>Psychological Science</i> , <i>18</i> , 893–900
939	
940 941 942	Friedman, N. P., Miyake, A., Young, S. E., DeFries, J. C., Corley, R. P., & Hewitt, J. K. (2008). Individual differences in executive functions are almost entirely genetic in origin. <i>Journal of Experimental Psychology: General</i> , <i>137</i> , 201–225.
943	Enisderen N.B. Minsler A. Bakinsen I.I. & Harritt I.K. (2011) Develanmental
944 945 946 947	trajectories in toddlers' self-restraint predict individual differences in executive functions 14 years later: A behavioural genetic analysis. <i>Developmental Psychology</i> , 47, 1410–1430.
948	
949 950 951 952	Garon, N., Bryson, S. E., & Smith, I. M. (2008). Executive Function in Preschoolers: A Review Using an Integrative Framework. <i>Psychological Bulletin</i> , <i>134</i> , 31–60. doi: 10.1037/0033-2909.134.1.31.
953 954 955 956	Goschke, T. (2000). Intentional reconfiguration and involuntary persistence in task set switching. In S. Monsell & J. Driver (Eds.), <i>Control of cognitive processes: Attention and performance XVIII</i> (pp. 331–355). Cambridge, MA: MIT Press.
957 958 959	Gathercole, S. E., Pickering, S. J., Ambridge, B. & Wearing, H. (2004). The Structure of Working Memory From 4 to 15 Years of Age. <i>Developmental Psychology</i> , <i>40</i> , 177-190. doi: 10.1037/0012-1649.40.2.177
960	
961 962 963 964	Hart, H., Radua, J., Nakao, T., Mataix-Cols, D., & Rubia, K. (2013). Meta-analysis of Functional Magnetic Resonance Imaging Studies of Inhibition and Attention in Attention-deficit/Hyperactivity Disorder. <i>JAMA Psychiatry</i> , 70, 185-198. doi:10.1001/jamapsychiatry.2013.277
965	
966 967 968 969	Harvey, P. O., Le Bastard, G., Pochon, J. B., Levy, R., Allilaire, J. F. Dubois, B., & Fossati, P. (2004). Executive functions and updating of the contents of working memory in unipolar depression. <i>Journal of Psychiatric Research</i> , <i>38</i> , 567-576. doi:10.1016/j.jpsychires.2004.03.003
970	
971 972	Herd, S. A., O'Reilly, R. C., Hazy, T. E., Chatham, C. H., Brant, A. M., & Friedman, N. P. (2014). A neural network model of individual differences in task switching
973 974	abilities. <i>Neuropsychologia</i> , 62, 375-389. doi:10.1016/j.neuropsychologia.2014.04.014
975	
976	Hill, A. C., Laird, A. R., & Robinson, J. L. (2014). Gender differences in working
977 978	doi:10.1016/j.biopsycho.2014.06.008
9/9	$\mathbf{H}_{\mathbf{a}} \neq \mathbf{A} \mathbf{D}_{\mathbf{a}} = \mathbf{A} $
980	roude, O., Kossi, S., Lubin, A., & Johol, M. (2010). Mapping numerical processing,
981	studios including 842 childron Davalonmental Science 12, 876,885
982 082	doi:10.1111/j.1467.7687.2000.00028 v
705 Q81	uvi.10.1111/J.140/-/00/.2007.007J0.X
204	

985 986	Howard, S. J., Okely, A., & Ellis, Y. G. (2015). Evaluation of a differentiation model of preschoolers' executive functions. <i>Frontiers in Psychology</i> , <i>6</i> , 285. doi:
987	10.3389/fpsyg.2015.00285
988	Hyperbox C_{1000} Executive function in preschoolers. Links with theory of mind and
989 990	verbal ability. British Journal of Developmental Psychology, 16, 233–253.
991 002	Huizinga M. Dolan C. & van der Molen M. (2006). Age-related change in
993 994	executive function: Developmental trends and a latent variable analysis. <i>Neuropsychologia, 44, 2017–2036.</i>
995	
996 997 998	Irving, E. I., González, E. G., Lillakas, L., Warebam, J., & McCarthy, T. (2011). Effect of Stimulus Type on the Eye Movements of Children. <i>Investigative</i> <i>Ophthalmology & Visual Science</i> , <i>52</i> , 658-664. doi:10.1167/iovs.10-5480
999	
1000 1001	Karasinski, C. (2015). Language ability, executive functioning and behaviour in school-age children. <i>International Journal of Language & Communication Disorders</i> , 50, 144, 150, 1, i. 10, 1111/1460, 6004, 12104
1002	<i>50</i> , 144-150. doi:10.1111/1460-6984.12104
1003	Kenworthy I. Verve R. F. Anthony I. G. & Wallace G. I. (2008). Understanding
1004	executive control in autism spectrum disorders in the lab and in the real world
1005	Neuronsychology Review, 18, 320–338.
1007	
1008	Kharitonova, M., Winter, W., & Sheridan, M. A. (2015). As Working Memory
1009	Grows: A Developmental Account of Neural Bases of Working Memory Capacity in
1010 1011	5- to 8-Year Old Children and Adults. <i>Journal of Cognitive Neuroscience</i> , 27, 1775-1788. doi:10.1162/jocn_a_00824
1012	
1013	Kim, C., Cilles, S. E., Johnson, N. F., & Gold, B. T. (2012). Domain General and
1014	Domain Preferential Brain Regions Associated With Different Types of Task
1015	Switching: A Meta-Analysis. <i>Human Brain Mapping</i> , 33, 130-142.
1016	doi:10.1002/hbm.21199
1017	Kriegeskorte N. Simmons, W. K. Bellgowen, D. S. F. & Beker, C. I. (2000)
1018	Circular analysis in systems neuroscience: the dangers of double dipping <i>Nature</i>
1019	Neuroscience 12 535-540 doi:10.1038/nn.2303
1021	17000 05000000, 12, 555 5 10. doi:10.1050/111.2505
1022	Kwon, H., Reiss, A. L., & Menon, V. (2002). Neural basis of protracted
1023	developmental changes in visuo-spatial working memory. PNAS, 99, 13336–13341.
1024	doi:10.1073_pnas.162486399
1025	
1026	Laird, A. R., Fox, P. M., Price, C. J., Glahn, D. C., Uecker, A. M., Lancaster, J. L.,
1027	. Fox, P. T. (2005). ALE meta-analysis: Controlling the false discovery rate and
1028	performing statistical contrasts. Human Brain Mapping, 25(1), 155-164.
1029	doi:10.1002/hbm.20136
1030	
1031	Lancaster, J. L., Tordesillas-Gutierrez, D., Martinez, M., Salinas, F., Evans, A., Zilles,
1032	K., Mazziotta, J. C., & Fox, P. T. (2007). Bias between MNI and Talairach
1033	coordinates analyzed using the ICBM-152 brain template. <i>Human Brain Mapping</i> , 28, 1104–1205
1034	1194-1205.

1035	
1036	Lee, K., Bull, R., & Ho, R. M. (2013). Developmental changes in executive
1037	functioning. Child Development, 84, 1933-1953. doi: 10.1111/cdev.12096
1038	
1039	Lehto I (1996) Are Executive Function Tests Dependent on Working Memory
1040	Conscitute? The Quarterly Journal of Experimental Psychology 404, 29-50
1040	Capacity: The Quarterty Journal of Experimental Tsychology, 49A, 29-50.
1041	
1042	Lento, J., Juujarvi, P., Kooistra, L., & Pulkkinen, L. (2003). Dimensions of executive
1043	functioning: Evidence from children. British Journal of Developmental Psychology,
1044	21, 59–80.
1045	
1046	Lei, D., Du, M., Wu, M., Chen, T., Huang, X., Du, X. et al. (2015). Functional MRI
1047	reveals different response inhibition between adults and children with ADHD.
1048	<i>Neuropsychology</i> , 29, 874-881. doi: 10.1037/neu0000200
1049	
1050	Lenartowicz A Kalar D I Congdon E & Poldrack R A (2010) Towards an
1050	Ontology of Cognitive Control Topics in Cognitive Science 2, 678, 602
1051	doi:10.1111/i 1756.9765.2010.01100 v
1052	dol:10.1111/J.1/30-8/03.2010.01100.x
1053	
1054	Linares, R., Bajo, M. T., & Pelegrina, S. (2016). Age-related differences in working
1055	memory updating components. Journal of Experimental Child Psychology, 147, 39-
1056	52. doi:10.1016/j.jecp.2016.02.009
1057	
1058	Lerner, M. D., & Lonigan, C. J. (2014). Executive Function Among Preschool
1059	Children: Unitary Versus Distinct Abilities. Journal of Psychopathology and
1060	Behavioural Assessment, 36, 626-639. doi:10.1007/s10862-014-9424-3
1061	
1062	Levy, B. J., & Wagner, A. D. (2011). Cognitive control and right ventrolateral
1063	prefrontal cortex: reflexive reorienting motor inhibition and action updating Annals
1064	of the New York Academy of Sciences 1224 A0-62 doi: 10 1111/i 1749-
1065	$6622 \ 2011 \ 0.5058 \ w$
1005	0052.2011.05958.X
1066	
1067	MacDonald, K. B. (2008). Effortful Control, Explicit Processing, and the Regulation
1068	of Human Evolved Predispositions. <i>Psychological Review</i> , 115, 1012-1031. doi:
1069	10.1037/a0013327
1070	
1071	Mechelli, A., Viding, E., Pettersson-Yeo, W., Tognin, S., & McGuire, P. K. (2009).
1072	Genetic variation in neuregulin1 is associated with differences in prefrontal
1073	engagement in children. Human Brain Mapping, 30(12), 3934-3943.
1074	doi:10.1002/hbm.20818
1075	
1075	Melby Lervag M & Hulme C (2013) Is Working Memory Training Effective? A
1070	Moto Analytic Deview, Developmental Psychology 40, 270, 201
1079	doi:10.1027/00029229
10/8	u01.10.1037/a0020220
1079	
1080	Miller, M. R., Giesbrecht, G. F., Muller, U., McInerney, R. J., & Kerns, K. A. (2012).
1081	A Latent Variable Approach to Determining the Structure of Executive Function in
1082	Preschool Children. Journal of Cognition and Development, 13, 395-423. doi:
1083	10.1080/15248372.2011.585478
1084	

Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, 1085 T. (2000). The unity and diversity of executive functions and their contributions to 1086 complex "frontal lobe" tasks: A latent variable analysis. *Cognitive Psychology*, 41, 1087 49–100. 1088 1089 Miyake, A., & Friedman, N. P. (2012). The Nature and Organization of Individual 1090 1091 Differences in Executive Functions: Four General Conclusions. Current Directions in Psychological Science, 21, 8-14. doi:10.1177/0963721411429458. 1092 1093 1094 Morton, J. B., Bosma, R., & Ansari, D. (2009). Age-related changes in brain activation associated with dimensional shifts of attention: An fMRI study. 1095 Neuroimage, 46, 249-256. doi:10.1016/j.neuroimage.2009.01.037 1096 1097 Murphy, J. W., Foxe, J. J., & Molholm, S. (2016). Neuro-oscillatory mechanisms of 1098 intersensory selective attention and task switching in school-aged children, 1099 adolescents and young adults. Developmental Science, 19, 469-487. 1100 doi:10.1111/desc.12316 1101 1102 Munakata, Y. (2001). Graded representations in behavioural dissociations. Trends in 1103 1104 Cognitive Sciences, 5, 309-315. doi:10.1016/S1364-6613(00)01682-X 1105 Nee, D. E., Brown, J. W., Askren, M. K., Berman, M. G., Demiralp, E., Krawitz, A., 1106 1107 & Jonides, J. (2013). A Meta-analysis of Executive Components of Working Memory. Cerebral Cortex, 23, 264-282. doi:10.1093/cercor/bhs007 1108 1109 1110 Neufang, S., Fink, G. R., Herpertz-Dahlmann, B., Willmes, K., & Konrad, K. (2008). Developmental changes in neural activation and psychophysiological interaction 1111 patterns of brain regions associated with interference control and time perception. 1112 1113 Neuroimage, 43, 399-409. doi: 10.1016/j.neuroimage.2008.07.039 1114 Niendam, T. A., Laird, A. R., Ray, K. L., Dean, Y. M., Glahn, D. C., & Carter, C. S. 1115 (2012). Meta-analytic evidence for a superordinate cognitive control network 1116 subserving diverse executive functions. Cognitive, Affective, & Behavioral 1117 Neuroscience, 12, 241-268. doi:10.3758/s13415-011-0083-5 1118 1119 Peterburs, J., Thürling, M., Rustemeier, M., Göricke, S., Suchan, B., Timmann, D. et 1120 al. (2015). A cerebellar role in performance monitoring-Evidence from EEG 1121 andvoxel-based morphometry in patients with cerebellar degenerative disease. 1122 1123 Neuropsychologia, 68, 139-147. doi:10.1016/j.neuropsychologia.2015.01.017 1124 Poldrack, R. A. (2007). Region of interest analysis for fMRI. SCAN, 2, 67-70. 1125 doi:10.1093/scan/nsm006 1126 1127 Prabhakaran, V., Narayanan, K., Zhao, Z., & Gabrieli, J. D. (2000). Integration of 1128 1129 diverse information in working memory within the frontal lobe. Nature Neuroscience, 3, 85-89. doi: 10.1038/71156 1130 1131 1132 Reineberg, A. E., Andrews-Hanna, J. R., Depue, B. E., Friedman, N. P., & Banich, M. 1133 T. (2015). Resting-state networks predict individual differences in common and

1134	specific aspects of executive function. <i>NeuroImage</i> , 104, 69–78.
1135	doi:10.1016/j.neuroimage.2014.09.045
1136	
1137	Repovs, G., & Baddeley, A. (2006). The multi-component model of working
1138	memory: Explorations in experimental cognitive psychology. <i>Neuroscience</i> , 139, 5-
1139	21. doi:10.1016/j.neuroscience.2005.12.061
1140	
1141	Riggs, N. R., Jahromi, L. B., Razza, R. P., Dillworth-Bart, J. E., & Müeller, U.
1142	(2006). Executive function and the promotion of social-emotional competence.
1143	Journal of Applied Developmental Psychology, 27, 300–309.
1144	doi:10.1016/j.appdev.2006. 04.002
1145	
1146	Roelofs, R. L., Visser, E. M., Berger, H. J. C., Prins, J. B., Van Schrojenstein
1147	Lantman-De Valk, H. M. J., & Teunisse, J. P. (2015). Executive functioning in
1148	individuals with intellectual disabilities and autism spectrum disorders. Journal of
1149	Intellectual Disability Research, 59, 125-137. doi: 10.1111/jir.12085
1150	
1151	Rose, S. A., Feldman, J. F., & Jankowski, J. J. (2011). Modelling a cascade of effects:
1152	The role of speed and executive functioning in preterm/full-term differences in
1153	academic achievement. Developmental Science, 14, 1161–1175.
1154	
1155	Rubia, K., Smith, A. B., Woolley, J., Nosarti, C., Heyman, I., Taylor, E., et al. (2006).
1156	Progressive increase of frontostriatal brain activation from childhood to adulthood
1157	during event-related tasks of cognitive control. <i>Human Brain Mapping</i> , 27, 973-993.
1158	doi: 10.1002/hbm.20237
1159	
1160	Satterthwaite, T. D., Wolf, D. H., Erus, G., Ruparel, K., Elliott, M. A., Gennatas, E.
1161	D., Hopson, R., Jackson, C., Prabhakaran, K., & Bilker, W. B. <i>et al.</i> (2013).
1162	Functional maturation of the executive system during adolescence. <i>Journal of</i>
1163	<i>Neuroscience</i> , 33, 16249–16261, doi:10.1523/ineurosci.2345-13.2013
1164	
1165	Shallice, T. (1988). From neuropsychology to mental structure. New York:
1166	Cambridge University Press.
1167	
1168	Shing, Y. L., Lindenberger, U., Diamond, A., Li, S., & Davidson, M. C. (2010).
1169	Memory Maintenance and Inhibitory Control Differentiate from Early Childhood to
1170	Adolescence, <i>Developmental Neuropsychology</i> 35, 679-697
1170	doi:10.1080/87565641.2010.508546
1172	doi.10.1000/07505011.2010.500510
1172	Simmonds D I Pekar I I & Mostofsky S H (2008) Meta-analysis of Go/No-go
1173	tasks demonstrating that fMRI activation associated with response inhibition is task-
1175	dependent Neuronsychologia 46, 224-232
1176	doj: 10 1016/i neuropsychologia 2007 07 015
1177	uon 10.1010/j.neuropsychologia.2007.01.015
11//	Smolker H R Denue R E Reineberg A E Orr I M & Ranich M T (2015)
1170	Individual differences in rational prefrontal gray matter morphometry and fractional
11/7	anisotropy are associated with different constructs of executive function. Prair
1100	Structure and Function 220 1201 1206 doi:10.1007/200420.014.0722 y
1101	Siructure and Function, 220, 1271-1300. doi:10.1007/800427-014-0723-y
1102	

Spencer-Smith, M., & Klingberg, T. (2015). Benefits of a Working Memory Training 1183 Program for Inattention in Daily Life: A Systematic Review and Meta-Analysis. Plos 1184 One, 10, 18. doi:10.1371/journal.pone.0119522 1185 1186 St Clair-Thompson, H. L., & Gathercole, S. E. (2006). Executive functions and 1187 achievements in school: Shifting, updating, inhibition, and working memory. The 1188 Quarterly Journal of Experimental Psychology, 59, 745–759. 1189 1190 Stuss, D. T. (1992). Biological and psychological development of executive 1191 functions. Brain and Cognition, 20, 8-23. 1192 1193 Swick, D., Ashley, V., & Turken, U. (2011). Are the neural correlates of stopping and 1194 not going identical? Quantitative meta-analysis of two response inhibition tasks. 1195 Neuroimage, 56, 1655-1665. doi:10.1016/j.neuroimage.2011.02.070 1196 1197 Talairach, J., & Tournoux, P. (1988). Co-planar Stereotaxic Atlas of the Human 1198 Brain: 3-Dimensional Proportional System - an Approach to Cerebral Imaging. New 1199 1200 York, NY: Thieme Medical Publishers. 1201 Tomasino, B., & Gremese, M. (2016). Effects of Stimulus Type and Strategy on 1202 1203 Mental Rotation Network: An Activation Likelihood Estimation Meta-Analysis. Frontiers in Human Neuroscience, 9, 693. doi:10.3389/fnhum.2015.00693 1204 1205 Tsujimoto, S., Kuwajima, M., & Sawaguchi, T. (2007). Developmental fractionation 1206 of working memory and response inhibition during childhood. Journal of 1207 Experimental Psychology, 54, 30-37. doi: 10.1027/1618-3169.54.1.30 1208 1209 Turkeltaub, P. E., Eden, G. F., Jones, K. M., & Zeffiro, T. A. (2002). Meta- analysis 1210 of the functional neuroanatomy of single- word reading: Method and validation. 1211 NeuroImage, 16, 765-780. 1212 1213 Unsworth, N., & Engle, R. W. (2008). Speed and Accuracy of Accessing Information 1214 in Working Memory: An Individual Differences Investigation of Focus Switching. 1215 Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 616-630. 1216 1217 doi: 10.1037/0278-7393.34.3.616 1218 Usai, M. C., Viterbori, P., Traverso, L., & De Franchis, V. (2014). Latent structure of 1219 executive function in five- and six-year-old children: A longitudinal study. European 1220 Journal of Developmental Psychology, 11, 447–462. 1221 doi:10.1080/17405629.2013.840578 1222 1223 van der Sluis, S., de Jong, P. F., & van der Leij, A. (2007). Executive functioning in 1224 children, and its relations with reasoning, reading, and arithmetic. Intelligence, 35, 1225 427-449. doi:10.1016/j.intell.2006.09.001 1226 1227 Van Eylen, L., Boets, B., Steyaert, J., Evers, K., Wagemans, J., & Noens, I. (2011). 1228 Cognitive flexibility in autism spectrum disorder: Explaining the inconsistencies? 1229 Research in Autism Spectrum Disorders, 5, 1390-1401. 1230 doi:10.1016/j.rasd.2011.01.025 1231 1232

van 't Ent, D., van Beijsterveldt, C. E., Derks, E. M., Hudziak, J. J., Veltman, D. J., 1233 Todd, R. D., ... De Geus, E. J. (2009). Neuroimaging of response interference in 1234 twins concordant or discordant for inattention and hyperactivity symptoms. 1235 Neuroscience, 164(1), 16-29. doi:10.1016/j.neuroscience.2009.01.056 1236 1237 Vara, A. S., Pang, E. W., Vidal, J., Anagnostou, E., & Taylor, M. (2014). Neural 1238 1239 mechanisms of inhibitory control continue to mature in adolescence. Developmental Cognitive Neuroscience, 10, 129-139. doi: 10.1016/j.dcn.2014.08.009 1240 1241 1242 Velanova, K., Wheeler, M. E., & Luna, B. (2008). Maturational changes in anterior cingulate and frontoparietal recruitment support the development of error processing 1243 and inhibitory control. Cerebral Cortex, 18, 2505-2522. doi: 10.1093/cercor/bhn01 1244 1245 Visser, E. M., Berger, H. J. C., Van Schrojenstein Lantman-De Valk, H. M. J., Prins, 1246 J. B., & Teunisse, J. P. (2015). Cognitive shifting and externalising problem 1247 behaviour in intellectual disability and autism spectrum disorder. Journal of 1248 Intellectual Disability Research, 59, 755-766. doi:10.1111/jir.12182 1249 1250 Wager, T. D., Lindquist, M., & Kaplan, L. (2007). Meta-analysis of functional 1251 1252 neuroimaging data: current and future directions. SCAN, 2, 150-158. 1253 doi:10.1093/scan/nsm015 1254 1255 Wager, T. D., Sylvester, C. Y., Lacey, S. C., Nee, D. E., Franklin, M., & Jonides, J. (2005). Common and unique components of response inhibition revealed by fMRI. 1256 1257 Neuroimage, 27, 323-340. doi: 10.1016/j.neuroimage.2005.01.054 1258 Welsh, J. A., Nix, R. L., Blair, C., Bierman, K. L., & Nelson, K. E. (2010). The 1259 development of cognitive skills and gains in academic school readiness for children 1260 1261 from low-income families. Journal of Educational Psychology, 102, 43-53. doi:10.1037/a0016738 1262 1263 Wiebe, S. A., Sheffield, T., Mize Nelson, J., Clark, C. A. C., Chevalier, N., & 1264 Andrews Epsy, K. (2011). The structure of executive function in 3-year-olds. Journal 1265 of Experimental Child Psychology, 108, 436–452. doi:10.1016/j.jecp.2010.08.008 1266 1267 Woo, C., Krishnan, A., & Wager, T. (2014). Cluster-extent based thresholding in 1268 1269 fMRI analyses: Pitfalls and recommendation. Neuroimage, 91, 412-419. doi:10.1016/j.neuroimage.2013.12.058 1270 1271 Woodcock, K. A., Oliver, C., & Humphreys, G. W. (2009) Task switching deficits 1272 and repetitive behaviour in genetic neurodevelopmental disorders: data from children 1273 with Prader-Willi syndrome 15 q11-q13 deletion and boys with Fragile-X syndrome. 1274 Cognitive Neuropsychology, 26, 172-194. doi.10.1080/02643290802685921. 1275 1276 Woodcock, K. A., Humphreys, G. W., Oliver, C. & Hansen, P. (2010). Neural 1277 correlates of task-switching in paternal 15q11-q13 deletion Prader-Willi syndrome. 1278 Brain Research, 1363, 128-142. 1279 1280 Young, S. E., Friedman, N. P., Miyake, A., Willcutt, E. G., Corley, R. P., Haberstick, 1281 B. C., et al. (2009). Behavioral disinhibition: liability for externalizing spectrum 1282

1283 1284 1285	disorders and its genetic and environmental relation to response inhibition across adolescence. <i>Journal of Abnormal Psychology</i> , 118, 117–130.
1286 1287 1288	Zelazo, P. D., & Frye, D. (1998). Cognitive complexity and control: The development of executive function. Current Directions in Psychological Science, 7, 121-126.
1288 1289 1290 1291	Zelazo, P. D., & Muller, U. (2002). Executive function in typical and atypical development. In U. Goswami (Ed.), <i>Handbook of childhood cognitive development</i> . Oxford: Blackwell. doi:10.1002/9780470996652.ch20
1292 1293	Zelazo P D Muller II Frye D & Marcovitch S (2003) The development of
1294 1295 1296 1297 1298	executive function: Cognitive complexity and control-revised. <i>Monographs of the</i> <i>Society for Research in Child Development, 68</i> , 93–119. doi:10.1111/j.1540- 5834.2003.06803007
1299 1300 1301 1302	Zhang, Y., Verhaeghen, P., & Cerella, J. (2012). Working memory at work: how the updating process alters the nature of working memory transfer. <i>Acta Psychologica</i> , <i>139</i> , 77-83. doi: 10.1016/j.actpsy.2011.10.012.
1303 1304 1305 1306 1307 1308	Zhang, D., Zhang, X., Sun, X., Li, Z., Wang, Z., He, S. et al. (2004). Cross-modal temporal order memory for auditory digits and visual locations: an fMRI study. <i>Human Brain Mapping</i> , <i>22</i> , 280-289. doi:10.1002/hbm.20036
1309	References relating to data used in meta-analysis (see Table 2)
1310 1311 1312	Anderson, K. G., Schweinsburg, A., & Paulus, M. P. (2005). Examining personality
1313 1314	and alcohol expectancies using functional magnetic resonance imaging (fMRI) with adolescents. <i>Journal of Studies on Alcohol</i> , 66(3), 323-331.
1313 1314 1315 1316 1317 1318	 and alcohol expectancies using functional magnetic resonance imaging (fMRI) with adolescents. <i>Journal of Studies on Alcohol</i>, <i>66</i>(3), 323-331. Beneventi, H., Tønnessen, F. E., Ersland, L., & Hugdahl, K. (2010). Executive working memory processes in dyslexia: Behavioral and fMRI evidence. <i>Scandinavian Journal of Psychology; Scandinavian Journal of Psychology</i>, <i>51</i>(3), 192-202.
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322	 and alcohol expectancies using functional magnetic resonance imaging (fMRI) with adolescents. <i>Journal of Studies on Alcohol</i>, <i>66</i>(3), 323-331. Beneventi, H., Tønnessen, F. E., Ersland, L., & Hugdahl, K. (2010). Executive working memory processes in dyslexia: Behavioral and fMRI evidence. <i>Scandinavian Journal of Psychology; Scandinavian Journal of Psychology</i>, <i>51</i>(3), 192-202. Beneventi, H., Tønnessen, F. E., Ersland, L., & Hugdahl, K. (2010). Working memory deficit in dyslexia: Behavioral and FMRI evidence. <i>The International Journal of Neuroscience; International Journal of Neuroscience</i>, <i>120</i>(1), 51-59.
 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 	 and alcohol expectancies using functional magnetic resonance imaging (fMRI) with adolescents. <i>Journal of Studies on Alcohol</i>, <i>66</i>(3), 323-331. Beneventi, H., Tønnessen, F. E., Ersland, L., & Hugdahl, K. (2010). Executive working memory processes in dyslexia: Behavioral and fMRI evidence. <i>Scandinavian Journal of Psychology; Scandinavian Journal of Psychology</i>, <i>51</i>(3), 192-202. Beneventi, H., Tønnessen, F. E., Ersland, L., & Hugdahl, K. (2010). Working memory deficit in dyslexia: Behavioral and FMRI evidence. <i>The International Journal of Neuroscience; International Journal of Neuroscience</i>, <i>120</i>(1), 51-59. Bennett, D. S., Mohamed, F. B., Carmody, D. P., Malik, M., Faro, S. H., & Lewis, M. (2013). Prenatal tobacco exposure predicts differential brain function during working memory in early adolescence: A preliminary investigation. <i>Brain Imaging and Behavior</i>, <i>7</i>(1), 49-59.

1333 1334	Bhaijiwala, M., Chevrier, A., & Schachar, R. (2014). Withholding and canceling a response in ADHD adolescents. <i>Brain and Behavior</i> , <i>4</i> (5), 602-614.
1335	doi:10.1002/brb3.244 [doi]
1336 1337 1338 1339 1340 1341	Chang, K., Adleman, N. E., Dienes, K., Simeonova, D. I., Menon, V., & Reiss, A. (2004). Anomalous prefrontal-subcortical activation in familial pediatric bipolar disorder: A functional magnetic resonance imaging investigation. <i>Archives of General Psychiatry</i> , <i>61</i> (8), 781-792.
1342 1343 1344 1345	Christakou, A., Halari, R., Smith, A. B., Ifkovits, E., Brammer, M., & Rubia, K. (2009). Sex-dependent age modulation of frontostriatal and temporo-parietal activation during cognitive control. <i>Neuroimage; Neuroimage, 48</i> (1), 223-236.
1346 1347 1348 1349	Ciesielski, K. T., Lesnik, P. G., Savoy, R. L., Grant, E. P., & Ahlfors, S. P. (2006). Developmental neural networks in children performing a categorical N-back task. <i>Neuroimage</i> , <i>33</i> (3), 980-990. doi: <u>10.1016/j.neuroimage.2006.07.028</u>
1350 1351 1352 1353 1354	Cservenka, A., Herting, M. M., & Nagel, B. J. (2012). Atypical frontal lobe activity during verbal working memory in youth with a family history of alcoholism. <i>Drug and Alcohol Dependence</i> , <i>123</i> (1-3), 98-104. doi:10.1016/j.drugalcdep.2011.10.021 [doi]
1355 1356 1357 1358 1359 1360	Cubillo, A., Smith, A. B., Barrett, N., Giampietro, V., Brammer, M., Simmons, A., & Rubia, K. (2014). Drug-specific laterality effects on frontal lobe activation of atomoxetine and methylphenidate in attention deficit hyperactivity disorder boys during working memory. <i>Psychological Medicine; Psychological Medicine, 44</i> (3), 633-646.
1361 1362 1363 1364 1365 1366	Cubillo, A., Smith, A. B., Barrett, N., Giampietro, V., Brammer, M. J., Simmons, A., & Rubia, K. (2014). Shared and drug-specific effects of atomoxetine and methylphenidate on inhibitory brain dysfunction in medication-naive ADHD boys. <i>Cerebral Cortex (New York, N.Y.: 1991), 24</i> (1), 174-185. doi:10.1093/cercor/bhs296 [doi]
1367 1368 1369 1370 1371	de Kieviet, J. F., Heslenfeld, D. J., Pouwels, P. J., Lafeber, H. N., Vermeulen, R. J., van Elburg, R. M., & Oosterlaan, J. (2014). A crucial role for white matter alterations in interference control problems of very preterm children. <i>Pediatric Research</i> , <i>75</i> (6), 731-737. doi:10.1038/pr.2014.31 [doi]
1372 1373 1374 1375	Dibbets, P., Bakker, K., & Jolles, J. (2006). Functional MRI of task switching in children with specific language impairment (SLI). <i>Neurocase</i> , <i>12</i> (1), 71-79. doi:R26807P875341888 [pii]
1376 1377 1378 1379 1380	Durston, S., Tottenham, N. T., Thomas, K. M., Davidson, M. C., Eigsti, I. M., Yang, Y., Casey, B. J. (2003). Differential patterns of striatal activation in young children with and without ADHD. <i>Biological Psychiatry</i> , <i>53</i> (10), 871-878. doi:S0006322302019042 [pii]

1381 1382 1383 1384	Fan, L., Gau, S. S., & Chou, T. (2014). Neural correlates of inhibitory control and visual processing in youths with attention deficit hyperactivity disorder: A counting stroop functional MRI study. <i>Psychological Medicine</i> , <i>44</i> (12), 2661-2671. doi:10.1017/S0033291714000038
1385 1386 1387 1388 1389 1390 1391	Fitzgerald, K. D., Zbrozek, C. D., Welsh, R. C., Britton, J. C., Liberzon, I., & Taylor, S. F. (2008). Pilot study of response inhibition and error processing in the posterior medial prefrontal cortex in healthy youth. <i>Journal of Child Psychology and Psychiatry, and Allied Disciplines, 49</i> (9), 986-994. doi:10.1111/j.1469-7610.2008.01906.x [doi]
1392 1393 1394 1395 1396 1397	Halari, R, Simic, M., Pariante, C. M., Papadopoulos, A., Cleare, A., Brammer, M., Rubia, K. (2009). Reduced activation in lateral prefrontal cortex and anterior cingulate during attention and cognitive control functions in medication-naïve adolescents with depression compared to controls. <i>Journal of Child Psychology and</i> <i>Psychiatry and Allied Disciplines, 50</i> (3), 307-316.
1397 1398 1399 1400 1401 1402	Heitzeg, M. M., Nigg, J. T., Hardee, J. E., Soules, M., Steinberg, D., Zubieta, J. K., & Zucker, R. A. (2014). Left middle frontal gyrus response to inhibitory errors in children prospectively predicts early problem substance use. <i>Drug and Alcohol Dependence</i> , <i>141</i> , 51-57.
1402 1403 1404 1405 1406	Iannaccone, R., Hauser, T. U., Ball, J., Brandeis, D., Walitza, S., & Brem, S. (2015). Classifying adolescent attention-deficit/hyperactivity disorder (ADHD) based on functional and structural imaging. <i>European Child & Adolescent Psychiatry</i> , doi:10.1007/s00787-015-0678-4 [doi]
1407 1408 1409 1410 1411	Lei, D., Ma, J., Du, X., Shen, G., Tian, M., & Li, G. (2012). Altered brain activation during response inhibition in children with primary nocturnal enuresis: An fMRI study. <i>Human Brain Mapping</i> , <i>33</i> (12), 2913-2919. doi:10.1002/hbm.21411 [doi]
1412 1413 1414 1415	Li, Y., Li, F., He, N., Guo, L., Huang, X., Lui, S., & Gong, Q. (2014). Neural hyperactivity related to working memory in drug-naive boys with attention deficit hyperactivity disorder. <i>Progress in Neuro-Psychopharmacology & Biological Psychiatry</i> , <i>53</i> , 116-122. doi:10.1016/j.pnpbp.2014.03.013 [doi]
1410 1417 1418 1419 1420	Liu, J., Bai, J., & Zhang, D. (2008). Cognitive control explored by linear modelling behaviour and fMRI data during stroop tasks. <i>Physiological Measurement</i> , <i>29</i> (7), 703-710. doi:10.1088/0967-3334/29/7/001 [doi]
1420 1421 1422 1423 1424	Malisza, K. L., Allman, A. A., Shiloff, D., Jakobson, L., Longstaffe, S., & Chudley, A. E. (2005). Evaluation of spatial working memory function in children and adults with fetal alcohol spectrum disorders: A functional magnetic resonance imaging study. <i>Pediatric Research</i> , <i>58</i> (6), 1150-1157. doi:58/6/1150 [pii]
1423 1426 1427 1428 1429	Massat, I., Slama, H., Kavec, M., Linotte, S., Mary, A., Baleriaux, D., Peigneux, P. (2012). Working memory-related functional brain patterns in never medicated children with ADHD. <i>PLoS One</i> , <i>7</i> (11), e49392.

1430	Mechelli, A., Viding, E., Pettersson-Yeo, W., Tognin, S., & McGuire, P. K. (2009).
1431	Genetic variation in neuregulin1 is associated with differences in prefrontal
1432	engagement in children. Human Brain Mapping, 30(12), 3934-3943.
1433	doi:10.1002/hbm.20818 [doi]
1434	
1435	Nagel, B. J., Herting, M. M., Maxwell, E. C., Bruno, R., & Fair, D. (2013).
1436	Hemispheric lateralization of verbal and spatial working memory during adolescence.
1437	Brain and Cognition, 82(1), 58-68. doi: 10.1016/j.bandc.2013.02.007
1438	
1439	Nelson, C. A., Monk, C. S., Lin, J., Carver, L. J., Thomas, K. M., & Truwit, C. L.
1440	(2000). Functional neuroanatomy of spatial working memory in children.
1441	Developmental Psychology, 36(1), 109-116.
1442	
1443	Nosarti, C., Rubia, K., Smith, A. B., Frearson, S., Williams, S. C., Rifkin, L., &
1444	Murray, R. M. (2006). Altered functional neuroanatomy of response inhibition in
1445	adolescent males who were born very preterm. <i>Developmental Medicine and Child</i>
1446	Neurology, 48(4), 265-271. doi:S0012162206000582 [pii]
1447	
1448	Posner, I., Maia, T. V., Fair, D., Peterson, B. S., SonugaBarke, E. I., & Nagel, B. J.
1449	(Sep 2011). The attenuation of dysfunctional emotional processing with stimulant
1450	medication: An fMRI study of adolescents with ADHD. <i>Psychiatry Research:</i>
1451	<i>Neuroimaging</i> , 193(3), 151-160, doi:10.1016/j.pscvchresns.2011.02.005
1452	
1453	Ouerne L. Berquin P. VernierHauvette M. Fall S. Deltour L. Mever M. & de
1454	Marco G (2008) Dysfunction of the attentional brain network in children with
1455	developmental coordination disorder: A fMRI study <i>Brain Research</i> 1244 Dec 89-
1456	102. doi:10.1016/i.brainres.2008.07.066
1457	
1/58	Robinson K F Pearson M M Cannistraci C I Anderson A W Kuttesch I F
1450	Wymer K Compas B F (2014) Neuroimaging of executive function in
1460	survivors of pediatric brain tumors and healthy controls <i>Neuronsychology</i> 28(5)
1461	791-800 doi:10.1037/neu0000077 [doi]
1/62	
1462	Podebacka S. Mannigan F. Muller K. I. Pinka S. Jacob M. I. Hubnar T.
1405	Smolka M N (2014) Interindividual differences in mid adolescents in error
1404	monitoring and post-error adjustment $PloS One O(2)$ e88957
1405	doi:10.1371/journal.pone.0088957 [doi]
1400	
1407	Dubia K. Smith A. D. Waallay, I. Nagarti C. Hayman, I. Taylor, E. & Drammar,
1468	Kubla, K., Silliul, A. D., Woolley, J., Nosaru, C., Heyliall, I., Taylor, E., & Drainnier, M. (2006). Drograssive increase of frontostriated brain activation from shildhood to
1409	M. (2000). Progressive increase of monitostriatal brain activation from childhood to adulthood during event related tasks of cognitive control. Human Prain Manning.
1470	Human Brain Mapping, 27(12), 072,002
14/1	11umun Brain Mapping, 27(12), 975-995.
14/2	Chainkanf C. I. Lastan D. M. Canas, I. N. Eliasson, I. C. Hatchison, E. D. C. 'C
14/3	Shehikopi, S. J., Lester, B. M., Sanes, J. N., Ellassen, J. C., Hutchison, E. K., Seifer,
14/4	K., Casey, D. J. (2009). Functional WIKI and response inhibition in children
14/J 1476	exposed to cocame in utero, prenninary indings. Developmental iveuroscience, 31(1- 2), 150, 166, doi:10, 1150/000207502 [doi:]
14/0	2), 139-100. a01.10.1139/000207305 [a01]
14//	

Sheridan, M., Kharitonova, M., Martin, R. E., Chatterjee, A., & Gabrieli, J. D. (2014). 1478 Neural substrates of the development of cognitive control in children ages 5-10 years. 1479 Journal of Cognitive Neuroscience, 26(8), 1840-1850. 1480 1481 Simmonds, D. J., Fotedar, S. G., Suskauer, S. J., Pekar, J. J., Denckla, M. B., & 1482 Mostofsky, S. H. (2007). Functional brain correlates of response time variability in 1483 children. Neuropsychologia, 45(9), 2147-2157. doi:S0028-3932(07)00030-9 1484 [pii]Singh, M. K., Chang, K. D., Mazaika, P., Garrett, A., Adleman, N., Kelley, R., . . 1485 . Reiss, A. (2010). Neural correlates of response inhibition in pediatric bipolar 1486 disorder. Journal of Child and Adolescent Psychopharmacology, 20(1), 15-24. 1487 doi:10.1089/cap.2009.0004 [doi] 1488 1489 Siniatchkin, M., Glatthaar, N., von Müller, G. G., Prehn-Kristensen, A., Wolff, S., 1490 Knöchel, S., ... Gerber, W. D. (2012). Behavioural treatment increases activity in the 1491 cognitive neuronal networks in children with attention Deficit/Hyperactivity disorder. 1492 Brain Topography, 25(3), 332-344. 1493 1494 1495 Suskauer, S. J., Simmonds, D. J., Fotedar, S., Blankner, J. G., Pekar, J. J., Denckla, M. B., . . . Denckla, M. B. (2008). Functional magnetic resonance imaging evidence 1496 for abnormalities in response selection in attention deficit hyperactivity disorder: 1497 Differences in activation associated with response inhibition but not habitual motor 1498 response. Journal of Cognitive Neuroscience, 20(3), 478-493. 1499 1500 1501 Tamm, L., Menon, V., Ringel, J., & Reiss, A. L. (2004). Event-related FMRI evidence of frontotemporal involvement in aberrant response inhibition and task 1502 switching in attention-deficit/hyperactivity disorder. Journal of the American 1503 1504 Academy of Child & Adolescent Psychiatry, 43(11), 1430-1440. 1505 Thomas, K. M., King, S. W., Franzen, P. L., Welsh, T. F., Berkowitz, A. L., Noll, D. 1506 1507 C., ... Casey, B. J. (1999). A developmental functional MRI study of spatial working memory. Neuroimage, 10(3), 327-338. doi:10.1006/nimg.1999.0466 1508 1509 Vaidya, C. J., Bunge, S. A., Dudukovic, N. M., Zalecki, C. A., Elliott, G. R., & 1510 Gabrieli, J. D. (2005). Altered neural substrates of cognitive control in childhood 1511 ADHD: Evidence from functional magnetic resonance imaging. The American 1512 Journal of Psychiatry, 162(9), 1605-1613. doi:162/9/1605 [pii] 1513 1514 van 't Ent, D., van Beijsterveldt, C. E., Derks, E. M., Hudziak, J. J., Veltman, D. J., 1515 Todd, R. D., ... De Geus, E. J. (2009). Neuroimaging of response interference in 1516 twins concordant or discordant for inattention and hyperactivity symptoms. 1517 1518 *Neuroscience*, *164*(1), 16-29. doi:10.1016/j.neuroscience.2009.01.056 [doi] 1519 1520 Vuontela, V., Steenari, M. R., Aronen, E. T., Korvenoja, A., Aronen, H. J., & Carlson, S. (2009). Brain activation and deactivation during location and color 1521 working memory tasks in 11-13-year-old children. Brain and Cognition, 69(1), 56-64. 1522 1523 Vuontela, V., Jiang, P., Tokariev, M., Savolainen, P., Ma, Y., Aronen, E. T., ... 1524 Carlson, S. (2013). Regulation of brain activity in the fusiform face and 1525

1526	parahippocampal place areas in 7–11-year-old children. Brain and Cognition,
1527	81(2),203-214. doi:10.1016/j.bandc.2012.11.003
1528	
1529	Ware, A. L., Infante, M. A., O'Brien, J. W., Tapert, S. F., Jones, K. L., Riley, E. P., &
1530	Mattson, S. N. (2015). An fMRI study of behavioral response inhibition in
1531	adolescents with and without histories of heavy prenatal alcohol exposure.
1532	<i>Behavioural Brain Research</i> , 278, 137-146. doi:10.1016/j.bbr.2014.09.037 [doi]
1533	
1534	Wendelken, C., Munakata, Y., Baym, C., Souza, M., & Bunge, S. A. (2012). Flexible
1535	rule use: Common neural substrates in children and adults. <i>Developmental Cognitive</i>
1536	<i>Neuroscience</i> , 2(5), 529-559. doi:10.1016/j.dcii.2012.02.001 [doi]
1537	
1538	Yu, B., Guo, Q., Fan, G., Ma, H., Wang, L., & Liu, N. (2011). Evaluation of working
1539	memory impairment in children with primary nocturnal enuresis: Evidence from
1540	event-related functional magnetic resonance imaging. <i>Journal of Paediatrics & Child</i>
1541	Health, 47(7), 429-435.
1542	
1543	
1544	
1545	
1546	
1547	
1548	
1549	
1550	
1551	
1552	
1553	
1554	

1556 Table 1. List of terms used in database searches

Search Terms	
	Inhibition Go-No/Go Stroop
	Anti-saccade Simon Flanker
	"Stop Task"
	Stop-signal
	"Inhibition of an orientating response"
fmri OR "functional magnetic resonance	Switching
imaging" AND child* AND	Switching
	Siniting
	Cognitive flexibility
	Flexibility
	"Task switching" "Set shifting"
	"Task shifting" "Set switching"
	Updating
	"Working memory updating"
	"n back"

1558			
1559			
1560			
1561			
1562			
1563			
1564			
1565			
1566			
1567			
1568			
1569			
1570			
1571			
1572			
1573			
1574			
1575			
1576			
1577			
1578			
1579			
1580			
1581			

Table 2. List of studies included in the meta-analysis. Main study demographics are 1582

outlined: EF task administered, mean age (in years), sample size (n), the fMRI 1583

contrasts of interest and the number of foci of significant activation associated with 1584 the contrast 1585

	Study	Task	Mean Age(sd) r	n	Contrast	Foci
INHIBITION	Fan et al., 2014	Number stroop	11.2(2.9)	23	incongru > congru	1
	Liu et al., 2008	Colour stroop	14.3(3.3)	10	incongru > congru	18
	Posner et al., 2011	Number stroop	13.4(1.2)	15	number blocks vs neutral blocks	5
	Van't Ent et al., 2009	Colour stroop	15.17(1.45)	18	incongru > congru	19
	Anderson et al., 2005	Shape GNG	13.63(.88)	46	no-go > go	2
	Bennett et al., 2009	Letter GNG	12	11	no-go > go	8
	Durston et al., 2003	Picture GNG	8.68(1.51)	7	no-go > go	8
	Heitzeg et al., 2014	Letter GNG	10.9(1.1) r=9.4- 12.9 (baseline)	19	no-go > go	6
	Iannaccone et al., 2015	Arrow non- spatial GNG	14.82(1.24) r=12- 16	18	no-go > go	17
	Lei et al., 2012	Letter GNG	11.5(1.9)	22	no-go > go	14
	Mechelli et al., 2009	Picture GNG	11.32(.67)	102	no-go > go	8
	Nosarti et al., 2006	Arrow non- spatial GNG	17.2(1.1)	14	no-go - odd trials	10
	Querne et al., 2008	Letter GNG	10(1.1) r=8.2-11.6	10	no-go > go	14
	Sheinkopf et al., 2009	Picture GNG	r=8-9	12	no-go > go	4
	Simmonds et al., 2007	Picture GNG	10.6(1.5) r=8-12	30	no-go > go	10
	Sinatchkin et al., 2012	Picture GNG	9.1(4.1) r=7-13	14	no-go > go	12
	Singh et al., 2010	Letter GNG	14.3(2.33)	22	no-go > go	2
	Suskauer et al., 2008	Picture GNG	10.8(1.3)	25	no-go > go	7
	Tamm et al., 2004	Letter GNG	15.58(0.79) r=14– 16	12	no-go > go (a vs b)	3
	Dimond Fitzgerald et al., 2008	Shape A-S	11.5(1.8) r=8-14	11	Anti-correct vs pro-correct	12
	Christakou et al., 2009	Simon task	r=10-17	36	incongru > congru	3
	Halari et al., 2009	Simon task	16.3(1.1)	21	incongru > congru	6
	Rodehacke et al., 2014	Simon task	14.6(.3) r=13.7- 15.5	185	incongru > congru	14
	Rubia et al., 2006	Simon task	15 r=10-17	29	incongru > congru	5
	Sheridan et al., 2014	Simon task	8.1(1.66) r= 5.7– 10.7	33	incongru > congru	7
	Bhaijiwala et al., 2014	Letter Stop task	15.4(1.7) r=8-19	12	stop > go	4
	Cubillo et al., 2014	Arrow Stop task	13.9(1.7) r=10-17	29	stop > go	9
	Ware et al., 2015	Letter Stop task	15.09(1.51) r=13-	21	stop > baseline (all stop coords)	7

	De Kieviet et al., 2014	Flanker task	8.7(0.5)	47	incongru > congru/neutral	2
	Vaidya et al., 2005	Flanker task	9.2(1.3)	10	incongru > neutral	4
	Van't Ent et al., 2009	Flanker task	15.17(1.45)	18	incongru > congru	20
SWITCHING	Christakou et al., 2009	Spatial switching	r=10-17	36	switch > repeat	4
	Dibbets et al., 2007	Picture switching	6.83(.53)	7	switch > nonswitch	13
	Halari et al., 2009	Spatial switching	16.3(1.1)	21	switch > repeat	8
	Rodehacke et al., 2014	Arrow switching	14.6(.3) r=13.7- 15.5	185	switch > repeat	19
	Rubia et al., 2006	Spatial switching	15 r=10-17	29	switch > repeat	5
	Wendelken et al., 2012	Picture switching	10.56 r=8-13	20	switch > repeat	9
UPDATING	Beneventi et al., 2010	Letter n back	13.5(0.5)	14	1/2 back > 0 back	13
	Beneventi et al., 2010 (2)	Phoneme n back	13.5(0.5)	13	2 back > 0 back	13
	Bennett et al., 2013	Number n back	12.6(0.2)	11	2 back>1 back	17
	Chang et al., 2004	Visuospatial n back	14.4(3.2)	10	2 back > 0 back/control	6
	Ciesielski et al., 2006	Categorical n back	6.1(0.55) r=5.11- 6.6 & 10.1(0.45) r=9.1-10.5	17	2 back > 0/1 back	26
	Cservenka et al., 2012	Letter n back	14.18(0.7)	16	2 back > 0 back	3
	Cubillo et al., 2014	Letter n back	13.7(2.4) r=10-17	20	1 b > 0 b, 2 b > 0 b, 3 b > 0 b	20
	Li et al., 2014	Categorical n back	10.9(2.7) r=8-16	27	2 back $> 0/1$ back	3
	Massat et al., 2012	Number n back	10.05(1.28)	14	2 back > 0 back	17
	Malisza et al., 2005	Spatial n back	r=7-12(1)	8	1 back > 0 back	13
	Nagel et al., 2013	Spatial & letter n back	13.11(1.78) r=10- 16	67	2 back > 0 back	21
	Nelson et al., 2000	Visuospatial n back	r=8-11.7	9	2/1 back > 0 back	10
	Robinson et al., 2014	Letter n back	12.9(2.78)	15	2 back > 0 back, 3 back > 0 back	18
	Thomas et al., 1999	Spatial n back	9.8 r=8-10	6	2/1 back > 0 back (individually assessed)	7
	Vuontela et al., 2009	Location & Colour n backs	12.2 r=11-13	8	L2 back > L0 back & C2 back > C0 back	42
	Vuontela et al., 2013	Face 1 back & scene 1 back	9.06 r=7-11	16	Face 1 back > rest & Scene 1 back > rest	18
	Yu et al., 2011	Categorical n back	11.3(1)	15	2 back > basal stimulus	7

1588

standard deviation is reported in brackets; r= range; congru= congruent; incongru= 1589

incongruent; GNG= Go-No/Go; b= back (e.g. 1 b); L= letter (e.g. L2 back); C= colour 1590

(e.g. C0 back); where '&' is reported, two separate contrasts were included in the 1591 analysis

1592

*For references of meta-analysis papers, see Supplementary materials section L 1593

1597 1598

1599 Figure 1. First and Second-level analysis design. A. First-level Common Executive

1600 (inhibit, update, switch); **B.** First-level Common Executive (inhibit, switch); **C.**

1601 Second-level Conjunction Analysis for Common Executive (inhibit, switch) &

1602 Updating; **D.** Second-level Contrast Analysis for Common Executive (inhibit, switch)

1603 & Updating. N.B. There are statistical differences between A and C

1604

Common Executive

Figure 3. First-level Analyses for Common Executive in the child group (x=5, y=17, z=47; x=113, y=75, z=58). ALE maps showing the significant brain activation for Common Executive in the child group (30 clusters).

1635 1636

Figure 4. First-level Analyses for Inhibition (x=5, y=17, z=47), Updating (x=5, y=17, z=47) & Switching (x=5, y=5, z=46) for the child/adolescent group. ALE maps reveal the significant activation clusters of Inhibition (20 clusters), Updating (25 clusters) and Switching (4 clusters) in the child/adolescent group.

1730 dataset was subtracted from the switching dataset.

1731 Supplementary Material 1732 1733 A. Detailed cluster demographics for first-level analyses for Common Executive, 1734 Inhibition, Updating & Switching in the child/adolescent group 1735

	Cluster #	Volume	Weight	ed Centro	e (x , y , z)	Region
Common Executive	1	(iiiii as) 8648	1.01	15.75	46.18	Left Medial Frontal Gyrus (BA 32 & 6)
	2	5312	29.77	-55.81	48.58	Right Inferior Parietal Lobule (BA 40)
						Right Superior Parietal Lobule (BA 7)
						Right Precuneus (BA 7)
	3	4880	39.49	21.29	-4.9	Right Insula
						Right Claustrum
	4	2376	-30.83	-49.47	48.18	Left Inferior Parietal Lobule (BA 40)
						Left Superior Parietal Lobule (BA 7)
						Left Precuneus (BA 7)
	5	1760	-32.59	20.39	1.76	Left Insula (BA 13)
	6	1496	36.12	42.31	31.02	Right Middle Frontal Gyrus (BA 9)
	7	1368	-46.65	6.2	31.79	Left Precentral Gyrus (BA 6)
						Left Middle Frontal Gyrus (BA 9)
	8	1176	-22.26	6.12	53.7	Left Frontal Sub-Gyral Matter (BA 6)
	9	904	47.19	5.81	31.56	Right Precentral Gyrus (BA 6)
	10	840	43.89	-61.17	-8.59	Right Fusiform Gyrus (BA 37 & 19)
	11	664	30.34	9.71	56.72	Right Frontal Sub-Gyral Matter (BA 6)
	12	584	-23.23	-65.86	39.7	Left Precuneus (BA 7)
	13	520	-43.79	31.16	32.59	Left Middle Frontal Gyrus (BA 9)
	14	448	36.23	-57.1	-26.51	Right Culmen
	15	448	26.91	-0.14	48.53	Right Middle Frontal Gyrus (BA 6)
	16	440	-7.95	-67.3	60.06	Left Superior Parietal Lobule (BA 7)
						Left Precuneus (BA 7)
	17	432	10.78	17.18	-2.69	Head of the Right Caudate nucleus
	18	384	47.24	-20.98	44.7	Right Postcentral Gyrus (BA 2)
	19	360	-40.63	-61.03	-26.43	Left Culmen
						Left Posterior Lobe of Cerebellum
	20	360	-11.79	1.57	14.52	Body of the Left Caudate nucleus
	21	304	55.16	-43.06	51.89	Right Inferior Parietal Lobule (BA 40)
	22	248	23.74	-68.91	33.17	Right Precuneus (BA 7)
	23	200	-53.11	-4.18	44.06	Left Precentral Gyrus (BA 4)
	24	184	4.49	-7.21	43.72	Right Cingulate Gyrus (BA 24)
	25	144	55.11	-42.99	31.98	Right Inferior Parietal Lobule (BA 40)
	26	120	5.47	-17.07	-9.21	Red Nucleus, Right Midbrain
	27	120	-39.86	-79.71	-3.06	Left Inferior Occipital Gyrus (BA 19)
	28	112	-27.59	-78.14	23.28	Left Middle Occipital Gyrus (BA 19)
	29	104	-44.95	26.77	1.99	Left Inferior Frontal Gyrus (BA 13)
Inhibition	1	6520	1.92	13.99	46.49	Right Cingulate Gyrus (BA 32)

Left Medial Frontal Gyrus (BA 32 & 6)

						Right Medial Frontal Gyrus (BA 6)
						Right Superior Frontal Gyrus (BA 6)
	2	4432	43.01	20.29	-5.22	Right Extra-Nuclear. (BA 47)
						Right Insula (BA 13)
	3	2560	27.09	-58.59	51.05	Right Precuneus (BA 7)
						Right Inferior Parietal Lobule (BA 40)
						Right Superior Parietal Lobule (BA 7)
	4	1776	-35.74	20.86	2.41	Left Insula (BA 13)
						Left Inferior Frontal Gyrus (BA 13)
						Left Inferior Frontal Gyrus (BA 45)
	5	952	10.97	17.27	-2.71	Head of the Right Caudate nucleus
	6	680	35.38	42.92	33.16	Right Middle Frontal Gyrus (BA 9)
	7	640	43.47	-58.79	-9.03	Right Fusiform Gyrus (BA 37)
	8	456	55.38	-43.71	32.24	Right Inferior Parietal Lobule (BA 40)
	9	408	-39.28	-79.32	-3.17	Left Inferior Occipital Gyrus (BA 19)
	10	400	-35.7	41.04	24.13	Left Superior Frontal Gyrus (BA 9)
	11	376	59.85	-40.89	13.09	Right Superior Temporal Gyrus (BA 22)
	12	336	-10.28	5.54	12.46	Body of the Left Caudate nucleus
	13	336	26.75	0	47.24	Right Middle Frontal Gyrus (BA 6)
	14	320	-24.37	-55.79	59.83	Left Precuneus (BA 7)
	15	272	22.44	-70.53	34	Right Precuneus (BA 31)
	16	256	-50.54	8.07	-3.84	Left Superior Temporal Gyrus (BA 22)
	17	232	50.01	5.99	30.01	Right Inferior Frontal Gyrus (BA 6)
	18	216	34.02	-57.69	-24.33	Right Culmen
	19	168	11.74	1.55	68.12	Right Superior Frontal Gyrus (BA 6)
	20	160	-29.09	-51.5	49.08	Left Precuneus (BA 7)
						Left Superior Parietal Lobule (BA 7)
Updating	1	3856	-0.36	17.41	46.32	Left Medial Frontal Gyrus (BA 6)
						Left Cingulate Gyrus (BA 24)
						Left Superior Frontal Gyrus (BA 6)
	2	1640	49.33	15.76	21.81	Right Inferior Frontal Gyrus (BA 44 & 9)
						Right Precentral Gyrus (BA 9)
						Right Middle Frontal Gyrus (BA 9)
	3	1504	40.12	-45.88	44.96	Right Inferior Parietal Lobule (BA 40)
	4	1232	-40.7	-66.06	-30.16	Left Posterior Lobe of Cerebellum
						Left Posterior Lobe of Cerebellum
	5	1192	35.24	22.12	-2.56	Right Insula
	6	1176	30.29	9.54	56.77	Right Frontal Sub-Gyral Matter (BA 6)
	7	1040	-24.69	7.46	52.41	Left Frontal Sub-Gyral Matter (BA 6)
	8	1016	-33.45	-45.37	42.4	Left Inferior Parietal Lobule (BA 40)
	9	880	31.48	-62.67	37.92	Right Precuneus (BA 7)
	10	680	-32.05	19.94	0.6	Left Claustrum
	11	656	-8.54	-65.5	61.93	Left Superior Parietal Lobule (BA 7)
	12	520	-40.99	1.94	35.51	Left Precentral Gyrus (BA 6)
						Left Inferior Frontal Gyrus (BA 6)

Executive function structure in children (supplementary material)

	13	488	-20.99	-63.99	41.96	Left Precuneus (BA 7)
	14	384	38.68	-60.09	-34.57	Right Anterior Lobe of Cerebellum
						Right Posterior Lobe of Cerebellum
	15	360	53.85	-42.37	52.63	Right Inferior Parietal Lobule (BA 40)
	16	320	37.46	35.67	26.99	Right Middle Frontal Gyrus (BA 9)
	17	288	-31.71	-51	56.59	Left Superior Parietal Lobule (BA 7)
	18	280	-43.21	-5.9	55.21	Left Precentral Gyrus (BA 4)
	19	264	16.82	-68.28	46.47	Right Precuneus (BA 7)
	20	224	-14.07	-2.08	17.21	Body of the Left Caudate nucleus
	21	192	37.35	-2.5	52.44	Right Precentral Gyrus (BA 6)
	22	152	-38.55	25.92	26.42	Left Middle Frontal Gyrus (BA 9)
	23	128	-54.39	24.37	34.38	Left Middle Frontal Gyrus (BA 9)
	24	112	17.58	-74.59	49.71	Right Precuneus (BA 7)
	25	104	52.17	0.94	43.81	Right Precentral Gyrus (BA 6)
Switching	1	488	48.52	-21.47	44	Right Postcentral Gyrus (BA 2)
	2	288	4.23	-8.34	44.05	Right Cingulate Gyrus (BA 24)
	3	272	-6.8	-72.46	4.07	Left Lingual Gyrus (BA 18)
	4	168	-46.69	3.31	29.07	Left Precentral Gyrus (BA 6)

BA, Brodmann area.

1749 1750 1751

B. Detailed cluster demographics for first-level analyses for Common Executive and Inhibition in the child group

	Cluster #	Volume (mm^3)	Weighted Centre (x,y,z)		e (x,y,z)	Region		
Common Executive	1	7352	0.38	15.48	46.66	Left Medial Frontal Gyrus (BA 32 & 6)		
	2	2024	39.14	-46.52	44.61	Right Inferior Parietal Lobule (BA 40)		
	3	1704	34.63	21.08	2.19	Right Claustrum		
						Right Insula		
	4	1504	22.32	-63.49	46.28	Right Precuneus (BA 7)		
	5	1120	-19.66	4.08	55.94	Left Frontal Sub-Gyral Matter (BA 6)		
	6	1000	28.48	-0.57	48.92	Right Middle Frontal Gyrus (BA 6)		
						Right Precentral Gyrus (BA 6)		
	7	840	35.99	42.97	32.26	Right Middle Frontal Gyrus (BA 9)		
	8	696	53.5	10.48	16.61	Right Inferior Frontal Gyrus (BA 44 & 9)		
	9	680	-31.78	21.67	2.75	Left Insula (BA 13)		
	10	456	-10.39	4.71	12.5	Body of the Left Caudate nucleus		
	11	400	16.53	-77.48	50.22	Right Precuneus (BA 19)		
	12	320	49.83	17.55	-11.37	Right Inferior Frontal Gyrus (BA 47)		
	13	296	-40.08	1.59	36.91	Left Precentral Gyrus (BA 6)		
	14	264	54.8	-41.78	31.05	Right Inferior Parietal Lobule (BA 40)		
	15	256	54.17	-42.28	52.3	Right Inferior Parietal Lobule (BA 40)		
	16	256	-43.53	-6	54.58	Left Precentral Gyrus (BA 4)		
	17	248	43.61	-58.2	-10.06	Right Fusiform Gyrus (BA 37)		
	18	240	42.2	-0.47	37.45	Right Precentral Gyrus (BA 6)		
1	19	232	24.15	45.28	-11.59	Right Medial Frontal Gyrus (BA 10)		
1	20	224	-22.66	19.07	54.58	Left Superior Frontal Gyrus (BA 6)		
	21	216	-20.53	-64.49	39.94	Left Precuneus (BA 7)		
	22	208	44.37	22.46	37.25	Right Middle Frontal Gyrus (BA 8)		
						Right Precentral Gyrus (BA 9)		
	23	208	-6.63	-71.86	55.37	Left Precuneus (BA 7)		
	24	192	-34.34	-51.51	45.43	Left Inferior Parietal Lobule (BA 40)		
	25	184	15.92	18.71	-2.88	Head of the Right Caudate nucleus		
	26	160	29.89	10.01	57.91	Right Frontal Sub-Gyral Matter (BA 6)		
	27	152	-15.6	-98.73	6.72	Left Cuneus (BA 17)		
	28	144	-0.44	3.54	22.22	Left Cingulate Gyrus (BA 24)		
1	29	120	28.41	59.46	10.94	Right Middle Frontal Gyrus (BA 10)		
1	30	120	24.28	-62.01	63.32	Right Superior Parietal Lobule (BA 7)		
Inhibition	1	4288	0.88	15.86	46.01	Left Medial Frontal Gyrus (BA 32)		
						Left Superior Frontal Gyrus (BA 6)		
						Right Medial Frontal Gyrus (BA 8 & 6)		
						Right Superior Frontal Gyrus (BA 6)		
	2	904	35.45	43.43	33.05	Right Middle Frontal Gyrus (BA 9)		
	3	584	-10.03	5.2	12.61	Body of the Left Caudate nucleus		
	4	472	15.4	18.59	-2.8	Head of the Right Caudate nucleus		

Executive function structure in children (supplementary material)

5	440	26.86	-0.21	47.1	Right Middle Frontal Gyrus (BA 6)
6	408	34.13	20.97	7.16	Right Insula (BA 13)
7	400	55.07	-41.85	31.08	Right Inferior Parietal Lobule (BA 40)
8	384	43.34	-58.48	-10.12	Right Fusiform Gyrus (BA 37)
9	384	34.71	-50.5	45.13	Right Superior Parietal Lobule (BA 7)
10	312	26.91	-63.06	47.23	Right Superior Parietal Lobule (BA 7)
11	280	51.68	16.78	-10.6	Right Inferior Frontal Gyrus (BA 47)
12	256	-22.11	19.7	55.47	Left Superior Frontal Gyrus (BA 6)
13	200	-45.92	7.43	-1.61	Left Insula (BA 13)
14	152	-36.46	-77.23	-5.13	Left Inferior Occipital Gyrus (BA 19)
15	128	-16.14	2.87	60.49	Left Middle Frontal Gyrus (BA 6)
16	120	-11.34	16.54	-1.34	Head of the Left Caudate nucleus
17	120	51.19	15.32	2.27	Right Precentral Gyrus (BA 44)
18	112	39.86	-40.41	44	Right Inferior Parietal Lobule (BA 40)

1752	BA,	Brodmann	area

1758 1759 1760 C. Second-level Conjunction and Contrast Analyses for Common Executive (update, switch) and Inhibition in the child/adolescent group

1700	Cluster #	Volume (mm^3)	Weighted	Center (x,y,	,z)	Region
Conjunction	1	2776	0.66	16.22	45.66	Left Medial Frontal Gyrus (BA 32)
						Left Superior Frontal Gyrus (BA 6)
	2	432	-32.07	20.87	1.35	Left Insula (BA 13)
	3	320	37.35	22.66	-5.77	Right Insula
	4	96	38.99	-49.98	46.99	Right Inferior Parietal Lobule (BA 40)
	5	56	32.3	20.3	4.54	Right Claustrum
	6	48	29.31	-61.68	46.67	Right Superior Parietal Lobule (BA 7)
	7	8	46	6	30	Right Precentral Gyrus (BA 6)
	8	8	26	-62	44	Right Precuneus (BA 7)
	9	8	-32	-52	54	Left Superior Parietal Lobule (BA 7)
	10	8	-32	-54	56	Left Superior Parietal Lobule (BA 7)
Difference	No cluste	rs found				

1761 BA, Brodmann area. 1762

1763 [Image 1]

1764 1765 1766 D. Second-level Conjunction and Contrast Analyses for Common Executive (update, switch) and Inhibition in the child group

1700						
	Cluster #	Volume (mm^3)	Weighted C	enter (x,y,z)		Region
Conjunction	1	2160	0.2	16.1	45.8	Left Medial Frontal Gyrus (BA 32)
						Left Medial Frontal Gyrus (BA 6)
						Right Cingulate Gyrus (BA 32)
						Right Medial Frontal Gyrus (BA 6)
	2	96	32.3	20.5	5.3	Right Claustrum
	3	48	40.7	-41	43.4	Right Inferior Parietal Lobule (BA 40)
	4	48	27	-62.7	44.7	Right Precuneus (BA 7)
	5	40	38	-49.2	45.6	Right Inferior Parietal Lobule (BA 40)
Difference	No clusters	found				

1767 BA, Brodmann area.

1768

1769 [Image 2]

E. Second-level Conjunction and Contrast Analyses for Common Executive (inhibit, switch) and Updating in the child/adolescent group

	Cluster #	Volume (mm^3)	Weighted Centre (x,y,z)			Region		
Conjunction	1	2576	0.72	16.18	46.52	Left Medial Frontal Gyrus (BA 6 & 32)		
						Left Superior Frontal Gyrus (BA 6)		
	2	440	-32.01	21.03	1.57	Left Insula (BA 13)		
	3	280	37.46	23.09	-6.05	Right Insula		
	4	120	-30.07	-47.71	42.8	No Grey Matter found		
	5	120	38.34	-49.99	46.69	Right Inferior Parietal Lobule (BA 40)		
	6	72	28.02	-61.99	46.65	Right Superior Parietal Lobule (BA 7)		
	7	56	32.56	20.32	4.55	Right Claustrum		
	8	40	-45.2	4.81	32	Left Inferior Frontal Gyrus (BA 6)		
						Left Precentral Gyrus (BA 6)		
Difference	1	1136	30.27	9.18	56.7	Right Frontal Sub-Gyral Matter (BA 6)		
						Right Middle Frontal Gyrus (BA 6)		
	2	760	45.34	19.75	23.99	Right Middle Frontal Gyrus (BA 9)		
						Right Precentral Gyrus (BA 9)		
	3	672	-40.93	-67.21	-31.57	Left Posterior Lobe of Cerebellum		
						Left Posterior Lobe of Cerebellum		
	4	144	38.79	-63.16	-39.27	Right Posterior Lobe of Cerebellum		

1773 BA, Brodmann area.

1775 1776 1777 F. Second-level Conjunction and Contrast Analyses for Common Executive (inhibit, switch) and Updating in the child group

1///	Cluster #	Volume (mm^3)	Weighted (Center (x,y,z)		Region
Conjunction	1	2208	0.3	16.2	45.8	Left Medial Frontal Gyrus (BA 32)
						Left Medial Frontal Gyrus (BA 6)
						Right Cingulate Gyrus (BA 32)
						Right Medial Frontal Gyrus (BA 6)
	2	104	22.6	20.6	5.2	Right Mediai Frontai Gyrus (B/Y 0)
	2	104	32.0	20.6	5.2	Right Claustrum
	3	56	40.6	-41.1	43.7	Right Inferior Parietal Lobule (BA 40)
	4	48	27	-62.7	44.7	Right Precuneus (BA 7)
	5	40	38	-49.2	45.6	Right Inferior Parietal Lobule (BA 40)
	6	8	36	-48	42	Right Inferior Parietal Lobule (BA 40)
Difference	No clusters	found				
1778	BA, Brodmann	area.				
1779						
1780	[Image 3]					
1781						
1782						
1783						
1784						
1786						
1780						
1788						
1789						
1790						
1791						
1792						
1793						
1794						
1795						
1796						
1797						
1798						
1799	G. Seco	nd-level C	onjunction	and Contras	st Analys	ses for Common Executive (inhibit,
1800	update) and S	Switching				
1801				~		
	Cluster #	Volume (mm^3)	Weighted	Centre (x,y,z)		Region
Conjunction	1	88	-45.28	3.59	30.14	Left Precentral Gyrus (BA 6)
Difference	1	192	-5.6	-72.66	3.18	Left Lingual Gyrus (BA 18)

1802 BA, Brodmann area. 1803

Executive function structure in children (supplementary material)

1804	Н.	Contrast clusters from the Control Analyses for Common Executive and Updating
1805		

1805						
Cluster # Volume (mm^3)		Weightee	d Centre (x,y	,z)	Region	
1	216	52.37	-42.44	55.78	Right Inferior Parietal Lobule (BA 40)	
2	304	37.81	-1.79	53.17	Right Middle Frontal Gyrus (BA 6)	
3	104	-30.88	-69.72	-25.72	Left Posterior Lobe of Cerebellum	
1806	BA, Brodmann area.					

 1806
 BA, Brodm

 1807
 1808

 [Image 4]

I. Second-level Conjunction and Contrast Analyses for Common Executive (inclusive) and Inhibition 1810

1910	1111110
1811	

	Cluster #	Volume	Weighte	ed Centre (x	z,y,z)	Region
Conjunction	1	5976	1.91	14.43	46.17	Right Cingulate Gyrus (BA 32)
						Left Medial Frontal Gyrus (BA 32 & 6)
						Right Medial Frontal Gyrus (BA 6)
						Right Superior Frontal Gyrus (BA 6)
	2	3464	42	20.82	-6.04	Right Extra-Nuclear (BA 47)
						Right Insula (BA 13)
	3	1616	23.27	-61.55	52.44	Right Precuneus (BA 7)
						Right Superior Parietal Lobule (BA 7)
	4	1232	-32.96	20.74	2.61	Left Insula (BA 13)
	5	744	35.75	-52.09	46.77	Right Inferior Parietal Lobule (BA 40)
	6	544	35.77	42.99	32.97	Right Middle Frontal Gyrus (BA 9)
	7	512	43.61	-59.02	-8.75	Right Fusiform Gyrus (BA 37)
	8	432	10.78	17.19	-2.69	Head of the Right Caudate nucleus
	9	288	26.76	-0.14	47.56	Right Middle Frontal Gyrus (BA 6)
	10	232	-24.83	-55.66	59.6	Left Precuneus (BA 7)
	11	224	49.95	6.05	30.07	Right Inferior Frontal Gyrus (BA 6)
	12	176	34.34	-57.48	-24.55	Right Culmen
	13	168	23.17	-69.83	33.83	Right Precuneus (BA 31)
	14	160	-10.13	4.67	12.79	Body of the Left Caudate nucleus
	15	160	-29.09	-51.5	49.08	Left Precuneus (BA 7)
						Left Superior Parietal Lobule (BA 7)
	16	144	55.11	-43	31.97	Right Inferior Parietal Lobule (BA 40)
	17	120	-39.86	-79.71	-3.06	Left Inferior Occipital Gyrus (BA 19)
	18	104	-44.94	26.76	1.97	Left Inferior Frontal Gyrus (BA 13)
Difference	No Clusters	s found				
1812 1813 1814 1815	BA, Brodmann	area.				

1832J.Second-level Conjunction and Contrast Analyses for Common Executive (inclusive) and1833Updating

1834						
	Cluster #	Volume (mm^3)	Weighte	ed Center (x	, y , z)	Region
Conjunction	n 1	3840	-0.34	17.42	46.31	Left Medial Frontal Gyrus (BA 6)
						Left Cingulate Gyrus (BA 24)
						Left Superior Frontal Gyrus (BA 6)
	2	1272	39.96	-45.89	44.99	Right Inferior Parietal Lobule (BA 40)
						Right Inferior Parietal Lobule (BA 40)
	3	1192	35.24	22.12	-2.56	Right Insula
	4	808	-33.08	-45.73	42.43	Left Inferior Parietal Lobule (BA 40)
	5	808	-24.17	7.34	52.62	Left Frontal Sub-Gyral (BA 6)
	6	680	-32.05	19.94	0.6	Left Claustrum
	7	664	30.35	9.68	56.72	Right Frontal Sub-Gyral Matter (BA 6)
	8	360	30.24	-61.8	45.49	Right Precuneus (BA 7)
	9	320	-8.27	-66.06	61.66	Left Superior Parietal Lobule (BA 7)
	10	296	-21.43	-64.71	40.62	Left Precuneus (BA 7)
	11	288	-31.71	-51	56.59	Left Superior Parietal Lobule (BA 7)
	12	240	37.6	35.8	27.58	Right Middle Frontal Gyrus (BA 9)
	13	232	54.57	-42.49	52.19	Right Inferior Parietal Lobule (BA 40)
	14	216	-42.74	3.12	33.76	Left Precentral Gyrus (BA 6)
						Left Inferior Frontal Gyrus (BA 6)
	15	160	-42.47	-65.46	-27.58	Left Posterior Lobe of Cerebellum
	16	120	-14	-1.53	16.84	Left Caudate
	17	112	15.97	-66.32	47.97	Right Precuneus (BA 7)
	18	104	38.34	-57.22	-29.75	Right Anterior Lobe of Cerebellum
	19	32	-38.01	28	27.48	Left Middle Frontal Gyrus (BA 9)
	20	8	-40	-62	-24	Left Posterior Lobe of Cerebellum
Difference	No clusters	s found				
1835 1836 1837 1838 1839 1840 1841 1842 1843	BA, Brodmanr K. Secc Switching	n area. ond-level C	onjunctio	on and Cor	ntrast An	alyses for Common Executive (inclusive) and
1844	Cluster #	Volumo	Weighter	Conton (m		Decien
	Gluster#	(mm ³)	weighte	neenter (X,	<u>(</u> ,2)	
onjunction	1	320	47.9	-21.33	44.23	Right Postcentral Gyrus (BA 2)
	2	160	4.45	-7.65	43.89	Right Cingulate Gyrus (BA 24)
	3	152	-46.17	3.24	29.47	Left Precentral Gyrus (BA 6)
ifference	No clusters f	found				

1845 BA, Brodmann area.

1846

Inhibition in the child/adolescent group (x=5, y=19, z=47). ALE maps showing the significant
 conjunction clusters of Common Executive (update, switch) and Inhibition in the child/adolescent
 group (10 clusters). No contrast clusters were found.

Conjunction

1878 Image 2. Second-level Conjunction Analysis for Common Executive (update, switch) and

Inhibition in the child group (x=5, y=-40, z=44). ALE maps showing the significant conjunction
clusters of Common Executive (update, switch) and Inhibition in the child group (5 clusters). No
contrast clusters were found.

